Multiomics Integration of Epigenetics, Proteomics, and Metabolomics Identifies Putative Drug Targets and Improves Early Prediction for Diabetes.

Diabetes Pub Date : 2025-09-12 DOI:10.2337/db25-0354
Wenran Li, Yingyu Cheng, Aoyuan Cui, Mengyao Huang, Qingxia Huang, Qi Wang, Mingfeng Xia, Jiange Qiu, Qianqian Peng, Jiarui Li, Huating Li, Yong Wang, Geng Zong, Yan Zheng, Jiucun Wang, Xin Gao, Chen Ding, Huiru Tang, Bing-Hua Jiang, Li Jin, Yu Li, Sijia Wang
{"title":"Multiomics Integration of Epigenetics, Proteomics, and Metabolomics Identifies Putative Drug Targets and Improves Early Prediction for Diabetes.","authors":"Wenran Li, Yingyu Cheng, Aoyuan Cui, Mengyao Huang, Qingxia Huang, Qi Wang, Mingfeng Xia, Jiange Qiu, Qianqian Peng, Jiarui Li, Huating Li, Yong Wang, Geng Zong, Yan Zheng, Jiucun Wang, Xin Gao, Chen Ding, Huiru Tang, Bing-Hua Jiang, Li Jin, Yu Li, Sijia Wang","doi":"10.2337/db25-0354","DOIUrl":null,"url":null,"abstract":"<p><strong>Article highlights: </strong>A total of 175 CpGs, 29 proteins, and 93 metabolites were identified as associated with diabetes, among which 43 CpGs and 25 metabolites were validated in an independent cohort. Causal and mediation analyses revealed 20 biomarkers and 190 signaling pathways involved in diabetes development. The integrative multiomics prioritization provides the community with an ordered list of diabetes biomarkers. We experimentally validated one of the prioritized proteins, COLEC11, and demonstrated its involvement in lipid metabolism. Our findings prioritize potential therapeutic targets and demonstrate that integrating multiomics biomarkers improves diabetes risk prediction beyond traditional clinical models.</p>","PeriodicalId":93977,"journal":{"name":"Diabetes","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Diabetes","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2337/db25-0354","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Article highlights: A total of 175 CpGs, 29 proteins, and 93 metabolites were identified as associated with diabetes, among which 43 CpGs and 25 metabolites were validated in an independent cohort. Causal and mediation analyses revealed 20 biomarkers and 190 signaling pathways involved in diabetes development. The integrative multiomics prioritization provides the community with an ordered list of diabetes biomarkers. We experimentally validated one of the prioritized proteins, COLEC11, and demonstrated its involvement in lipid metabolism. Our findings prioritize potential therapeutic targets and demonstrate that integrating multiomics biomarkers improves diabetes risk prediction beyond traditional clinical models.

表观遗传学、蛋白质组学和代谢组学的多组学整合确定了假定的药物靶点并改善了糖尿病的早期预测。
共鉴定出175个CpGs、29个蛋白和93个代谢物与糖尿病相关,其中43个CpGs和25个代谢物在独立队列中得到验证。因果和中介分析揭示了20个生物标志物和190个信号通路参与糖尿病的发展。综合多组学优先排序为社区提供了糖尿病生物标志物的有序列表。我们通过实验验证了其中一个优先蛋白COLEC11,并证明其参与脂质代谢。我们的研究结果优先考虑了潜在的治疗靶点,并表明整合多组学生物标志物可以改善传统临床模型之外的糖尿病风险预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信