Kinetic Characterization of Inhibition of Cathepsins L and S by Peptides With Anticancer Potential.

IF 2.8 4区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Olga E Chepikova, Victoria I Bunik, Ivan V Rodionov, Neonila V Gorokhovets, Andrey A Zamyatnin, Lyudmila V Savvateeva
{"title":"Kinetic Characterization of Inhibition of Cathepsins L and S by Peptides With Anticancer Potential.","authors":"Olga E Chepikova, Victoria I Bunik, Ivan V Rodionov, Neonila V Gorokhovets, Andrey A Zamyatnin, Lyudmila V Savvateeva","doi":"10.1002/prot.70047","DOIUrl":null,"url":null,"abstract":"<p><p>Cysteine cathepsins have been suggested as attractive therapeutic targets due to their critical role in several pathologies. In particular, inhibitors of cysteine cathepsins reduce the viability of tumor cells. The present study uses enzyme kinetics to characterize the interaction of human cathepsins L and S with their peptide substrate acetyl-QLLR-7-amino-4-methylcoumarin (Ac-QLLR-AMC) and peptide inhibitors with anti-tumor activity: FFSFGGAL (CS-PEP1) and acetyl-PLVE-fluoromethyl-ketone (Ac-PLVE-fmk). Due to multiple cellular locations of cathepsins, our study is conducted under different pH conditions, simulating lysosomal and cytosolic environments (pH 4.6 and 6.5-7.0). Catalytic activities of both cathepsins are higher at pH 6.5-7.0 compared to pH 4.6. Affinities for the substrate or inhibitor CS-PEP1 are higher for cathepsin L than S independent of pH, but show different pH sensitivities, reciprocating different pI's of the cathepsins. Mixed inhibition by CS-PEP1 is demonstrated for both cathepsins. While preincubation of cathepsins with CS-PEP1 does not enhance the inhibition, Ac-PLVE-fmk inactivates both cathepsins in the preincubation medium. A strong increase in the inactivation rate is observed with increasing pH in the interval including pK<sub>a</sub> of the active site cysteine residues of cathepsins, in agreement with the irreversible modification by mono-fluoromethyl ketones of the catalytic thiolate anion. At pH 4.6, cathepsin L has a higher affinity for Ac-PLVE-fmk, but a slower rate of the irreversible modification compared to cathepsin S. Our findings highlight opportunities for differential targeting of L and S cathepsins by peptide inhibitors in different cellular compartments, providing directions for cathepsin- and location-specific drug design.</p>","PeriodicalId":56271,"journal":{"name":"Proteins-Structure Function and Bioinformatics","volume":" ","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proteins-Structure Function and Bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/prot.70047","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Cysteine cathepsins have been suggested as attractive therapeutic targets due to their critical role in several pathologies. In particular, inhibitors of cysteine cathepsins reduce the viability of tumor cells. The present study uses enzyme kinetics to characterize the interaction of human cathepsins L and S with their peptide substrate acetyl-QLLR-7-amino-4-methylcoumarin (Ac-QLLR-AMC) and peptide inhibitors with anti-tumor activity: FFSFGGAL (CS-PEP1) and acetyl-PLVE-fluoromethyl-ketone (Ac-PLVE-fmk). Due to multiple cellular locations of cathepsins, our study is conducted under different pH conditions, simulating lysosomal and cytosolic environments (pH 4.6 and 6.5-7.0). Catalytic activities of both cathepsins are higher at pH 6.5-7.0 compared to pH 4.6. Affinities for the substrate or inhibitor CS-PEP1 are higher for cathepsin L than S independent of pH, but show different pH sensitivities, reciprocating different pI's of the cathepsins. Mixed inhibition by CS-PEP1 is demonstrated for both cathepsins. While preincubation of cathepsins with CS-PEP1 does not enhance the inhibition, Ac-PLVE-fmk inactivates both cathepsins in the preincubation medium. A strong increase in the inactivation rate is observed with increasing pH in the interval including pKa of the active site cysteine residues of cathepsins, in agreement with the irreversible modification by mono-fluoromethyl ketones of the catalytic thiolate anion. At pH 4.6, cathepsin L has a higher affinity for Ac-PLVE-fmk, but a slower rate of the irreversible modification compared to cathepsin S. Our findings highlight opportunities for differential targeting of L and S cathepsins by peptide inhibitors in different cellular compartments, providing directions for cathepsin- and location-specific drug design.

具有抗癌潜力的肽抑制组织蛋白酶L和S的动力学表征。
由于半胱氨酸组织蛋白酶在几种病理中起着关键作用,因此已被认为是有吸引力的治疗靶点。特别是,半胱氨酸组织蛋白酶的抑制剂会降低肿瘤细胞的生存能力。本研究利用酶动力学表征了人组织蛋白酶L和S与其肽底物乙酰- qllr -7-氨基-4-甲基香豆素(Ac-QLLR-AMC)和具有抗肿瘤活性的肽抑制剂FFSFGGAL (CS-PEP1)和乙酰- plve -氟甲基酮(Ac-PLVE-fmk)的相互作用。由于组织蛋白酶有多个细胞位置,我们的研究在不同的pH条件下进行,模拟溶酶体和细胞质环境(pH 4.6和6.5-7.0)。两种组织蛋白酶在pH为6.5-7.0时的催化活性均高于pH为4.6时。底物或抑制剂CS-PEP1对组织蛋白酶L的亲和力高于S,与pH无关,但表现出不同的pH敏感性,相互作用于组织蛋白酶的不同pI。CS-PEP1对两种组织蛋白酶均有混合抑制作用。虽然组织蛋白酶与CS-PEP1预孵育不会增强抑制作用,但Ac-PLVE-fmk在预孵育培养基中使两种组织蛋白酶失活。在包括组织蛋白酶活性位点半胱氨酸残基pKa在内的区间内,随着pH值的增加,失活率显著增加,这与催化硫酸阴离子的单氟甲基酮的不可逆修饰一致。在pH 4.6时,组织蛋白酶L对Ac-PLVE-fmk具有更高的亲和力,但与组织蛋白酶S相比,不可逆修饰的速率较慢。我们的研究结果突出了肽抑制剂在不同细胞区室中对L和S组织蛋白酶的差异靶向的机会,为组织蛋白酶和位置特异性药物设计提供了方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Proteins-Structure Function and Bioinformatics
Proteins-Structure Function and Bioinformatics 生物-生化与分子生物学
CiteScore
5.90
自引率
3.40%
发文量
172
审稿时长
3 months
期刊介绍: PROTEINS : Structure, Function, and Bioinformatics publishes original reports of significant experimental and analytic research in all areas of protein research: structure, function, computation, genetics, and design. The journal encourages reports that present new experimental or computational approaches for interpreting and understanding data from biophysical chemistry, structural studies of proteins and macromolecular assemblies, alterations of protein structure and function engineered through techniques of molecular biology and genetics, functional analyses under physiologic conditions, as well as the interactions of proteins with receptors, nucleic acids, or other specific ligands or substrates. Research in protein and peptide biochemistry directed toward synthesizing or characterizing molecules that simulate aspects of the activity of proteins, or that act as inhibitors of protein function, is also within the scope of PROTEINS. In addition to full-length reports, short communications (usually not more than 4 printed pages) and prediction reports are welcome. Reviews are typically by invitation; authors are encouraged to submit proposed topics for consideration.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信