Higher-order microbial interactions revealed by comparative metabolic modeling of synthetic communities with varying species composition.

IF 6.1 Q1 ECOLOGY
ISME communications Pub Date : 2025-08-14 eCollection Date: 2025-01-01 DOI:10.1093/ismeco/ycaf142
Dongyu Wang, Kristopher A Hunt, Britt Abrahamson, Zachary Flinkstrom, Xuanyu Tao, Ralph S Tanner, Kara B DeLeόn, Aifen Zhou, Jizhong Zhou, Michael J McInerney, Mari-Karoliina H Winkler, David A Stahl, Pieter Candry, Chongle Pan
{"title":"Higher-order microbial interactions revealed by comparative metabolic modeling of synthetic communities with varying species composition.","authors":"Dongyu Wang, Kristopher A Hunt, Britt Abrahamson, Zachary Flinkstrom, Xuanyu Tao, Ralph S Tanner, Kara B DeLeόn, Aifen Zhou, Jizhong Zhou, Michael J McInerney, Mari-Karoliina H Winkler, David A Stahl, Pieter Candry, Chongle Pan","doi":"10.1093/ismeco/ycaf142","DOIUrl":null,"url":null,"abstract":"<p><p>Understanding how microbial interactions scale with community complexity is key to microbiome engineering and ecological theory. This study investigates emergent metabolic behaviors in controlled <i>in vitro</i> synthetic anaerobic communities of two, three, or four species: cellulolytic bacterium (<i>Ruminiclostridium cellulolyticum</i>), a hydrogenotrophic methanogen (<i>Methanospirillum hungatei</i>), an acetoclastic methanogen (<i>Methanosaeta concilii</i>), and a sulfate-reducing bacterium (<i>Desulfovibrio vulgaris</i>), representing core metabolic guilds in cellulose degradation and carbon conversion. We applied a systems biology framework combining proteogenomics, stoichiometric flux modeling, and SMETANA (Species Metabolic Coupling Analysis) to quantify syntrophic cooperation and competition across configurations. Cooperation peaked in tri-cultures and declined nonlinearly in more complex assemblies. Species roles shifted contextually. <i>Ruminiclostridium cellulolyticum</i> was the dominant donor, adjusting cellulase and hydrogenase expression by partner. <i>Methanosaeta concilii</i> became fully metabolite-dependent while enhancing methanogenesis. <i>Desulfovibrio vulgaris</i> improved syntrophic efficiency via redox and hydrogen turnover. In contrast, <i>Methanospirillum hungatei</i>'s metabolic centrality declined despite higher CH₄ output, suggesting interaction strength depends more on compatibility than richness. Reduced interactions in the four-species community stemmed from a single configuration and need further validation. This study moves beyond descriptive work by quantitatively resolving how metabolic networks rewire across defined communities. By characterizing context-dependent flux shifts at multiple layers, we provide a framework for interpreting and engineering stable, functionally interdependent microbial ecosystems.</p>","PeriodicalId":73516,"journal":{"name":"ISME communications","volume":"5 1","pages":"ycaf142"},"PeriodicalIF":6.1000,"publicationDate":"2025-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12422100/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISME communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/ismeco/ycaf142","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Understanding how microbial interactions scale with community complexity is key to microbiome engineering and ecological theory. This study investigates emergent metabolic behaviors in controlled in vitro synthetic anaerobic communities of two, three, or four species: cellulolytic bacterium (Ruminiclostridium cellulolyticum), a hydrogenotrophic methanogen (Methanospirillum hungatei), an acetoclastic methanogen (Methanosaeta concilii), and a sulfate-reducing bacterium (Desulfovibrio vulgaris), representing core metabolic guilds in cellulose degradation and carbon conversion. We applied a systems biology framework combining proteogenomics, stoichiometric flux modeling, and SMETANA (Species Metabolic Coupling Analysis) to quantify syntrophic cooperation and competition across configurations. Cooperation peaked in tri-cultures and declined nonlinearly in more complex assemblies. Species roles shifted contextually. Ruminiclostridium cellulolyticum was the dominant donor, adjusting cellulase and hydrogenase expression by partner. Methanosaeta concilii became fully metabolite-dependent while enhancing methanogenesis. Desulfovibrio vulgaris improved syntrophic efficiency via redox and hydrogen turnover. In contrast, Methanospirillum hungatei's metabolic centrality declined despite higher CH₄ output, suggesting interaction strength depends more on compatibility than richness. Reduced interactions in the four-species community stemmed from a single configuration and need further validation. This study moves beyond descriptive work by quantitatively resolving how metabolic networks rewire across defined communities. By characterizing context-dependent flux shifts at multiple layers, we provide a framework for interpreting and engineering stable, functionally interdependent microbial ecosystems.

Abstract Image

Abstract Image

Abstract Image

不同物种组成的合成群落的比较代谢模型揭示了高阶微生物相互作用。
了解微生物相互作用如何随群落复杂性而扩大是微生物组工程和生态学理论的关键。本研究研究了受控的2种、3种或4种体外合成厌氧菌群的突现代谢行为:纤维素分解菌(Ruminiclostridium celluolyticum)、氢营养产甲烷菌(Methanospirillum hungatei)、醋酸分解产甲烷菌(Methanosaeta concilii)和硫酸盐还原菌(Desulfovibrio vulgaris),它们代表了纤维素降解和碳转化的核心代谢行业。我们应用了一个系统生物学框架,结合了蛋白质基因组学、化学计量通量模型和SMETANA(物种代谢耦合分析)来量化不同构型的共生合作和竞争。合作在三种文化中达到顶峰,在更复杂的组合中呈非线性下降。物种的角色随着环境的变化而变化。溶纤维素反刍芽胞杆菌为优势供体,通过伴侣调节纤维素酶和氢化酶的表达。甲烷osaeta在促进甲烷生成的同时完全依赖代谢物。普通脱硫弧菌通过氧化还原和氢转化提高了协同效率。相比之下,黄盖特甲烷螺旋藻的代谢中心性下降,尽管更高的CH₄输出,表明相互作用强度更多地取决于相容性而不是丰富度。四种群落的相互作用减少源于单一配置,需要进一步验证。这项研究超越了描述性的工作,定量地解决了代谢网络如何在定义的社区中重新连接。通过描述环境相关的多层通量变化,我们为解释和设计稳定的、功能相互依赖的微生物生态系统提供了一个框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信