araCNA: somatic copy number profiling using long-range sequence models.

IF 2.8 Q1 GENETICS & HEREDITY
NAR Genomics and Bioinformatics Pub Date : 2025-09-09 eCollection Date: 2025-09-01 DOI:10.1093/nargab/lqaf124
Ellen Visscher, Christopher Yau
{"title":"araCNA: somatic copy number profiling using long-range sequence models.","authors":"Ellen Visscher, Christopher Yau","doi":"10.1093/nargab/lqaf124","DOIUrl":null,"url":null,"abstract":"<p><p>Somatic copy number alterations (CNAs) are hallmarks of cancer. Current algorithms that call CNAs from whole-genome sequenced (WGS) data have not exploited deep learning methods owing to computational scaling limitations. Here, we present a novel deep-learning approach, araCNA, trained only on simulated data that can accurately predict CNAs in real WGS cancer genomes. araCNA uses novel transformer alternatives (e.g. Mamba) to handle genomic-scale sequence lengths (∼1M) and learn long-range interactions. Results are extremely accurate on simulated data, and this zero-shot approach is on par with existing methods when applied to 50 WGS samples from the Cancer Genome Atlas. Notably, our approach requires only a tumour sample and not a matched normal sample, has fewer markers of overfitting, and performs inference in only a few minutes. araCNA demonstrates how domain knowledge can be used to simulate training sets that harness the power of modern machine learning in biological applications.</p>","PeriodicalId":33994,"journal":{"name":"NAR Genomics and Bioinformatics","volume":"7 3","pages":"lqaf124"},"PeriodicalIF":2.8000,"publicationDate":"2025-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12418177/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NAR Genomics and Bioinformatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/nargab/lqaf124","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/9/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

Abstract

Somatic copy number alterations (CNAs) are hallmarks of cancer. Current algorithms that call CNAs from whole-genome sequenced (WGS) data have not exploited deep learning methods owing to computational scaling limitations. Here, we present a novel deep-learning approach, araCNA, trained only on simulated data that can accurately predict CNAs in real WGS cancer genomes. araCNA uses novel transformer alternatives (e.g. Mamba) to handle genomic-scale sequence lengths (∼1M) and learn long-range interactions. Results are extremely accurate on simulated data, and this zero-shot approach is on par with existing methods when applied to 50 WGS samples from the Cancer Genome Atlas. Notably, our approach requires only a tumour sample and not a matched normal sample, has fewer markers of overfitting, and performs inference in only a few minutes. araCNA demonstrates how domain knowledge can be used to simulate training sets that harness the power of modern machine learning in biological applications.

araCNA:使用长程序列模型的体细胞拷贝数分析。
体细胞拷贝数改变(CNAs)是癌症的标志。由于计算尺度的限制,目前从全基因组测序(WGS)数据中调用cna的算法尚未利用深度学习方法。在这里,我们提出了一种新的深度学习方法,araCNA,仅在模拟数据上进行训练,可以准确预测真实WGS癌症基因组中的CNAs。araCNA使用新的变压器替代品(例如Mamba)来处理基因组尺度的序列长度(~ 1M)并学习远程相互作用。结果在模拟数据上非常准确,当应用于来自癌症基因组图谱的50个WGS样本时,这种零射击方法与现有方法相当。值得注意的是,我们的方法只需要一个肿瘤样本,而不是一个匹配的正常样本,有更少的过拟合标记,并在几分钟内完成推理。araCNA演示了如何使用领域知识来模拟训练集,从而在生物学应用中利用现代机器学习的力量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.00
自引率
2.20%
发文量
95
审稿时长
15 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信