Monike Willemin Quirino, Cleverson Hebbel, Adriana Mércia Guaratini Ibelli, Mônica Corrêa Ledur, Maurício Egídio Cantão, Jane de Oliveira Peixoto, Marcos Antonio Zanella Mores, Pricila Baldessar, Rafael Keith Ono, Mariana Groke Marques, Vanessa Peripolli, Rafael da Rosa Ulguim, Bernardo Garziera Gasperin, Ivan Bianchi
{"title":"Genome-wide association analysis highlights genomic regions and genes potentially associated with anestrus in crossbred gilts.","authors":"Monike Willemin Quirino, Cleverson Hebbel, Adriana Mércia Guaratini Ibelli, Mônica Corrêa Ledur, Maurício Egídio Cantão, Jane de Oliveira Peixoto, Marcos Antonio Zanella Mores, Pricila Baldessar, Rafael Keith Ono, Mariana Groke Marques, Vanessa Peripolli, Rafael da Rosa Ulguim, Bernardo Garziera Gasperin, Ivan Bianchi","doi":"10.1007/s00335-025-10159-3","DOIUrl":null,"url":null,"abstract":"<p><p>Anestrus, an infertility condition that affects several animal' species, is characterized by failing to display estrus. In pig production, it leads to the culling of 5 to 15% of the replacement gilts, resulting in significant losses impairing the swine female longevity. Despite that, little is known about the genetic mechanisms involved with anestrus in pigs. Hence, this study evaluated cyclic and non-cyclic F1 Landrace × Large White gilts to identify genomic regions associated with failure to display pubertal estrus through a genome-wide association study (GWAS), highlighting possible candidate genes involved with this condition in swine. Tissue samples were collected at 219.8 ± 4.7 days of age and genotyped with the PorcineSNP50 BeadChip from Illumina. In the GWAS, a SNP in the EML4 gene located on chromosome 3 (SSC3) was moderately associated with anestrus. The other 14 SNPs suggestively associated with anestrus were identified on SSCs 1, 3, 6, 7, 9 and 15. Investigating the regions close to those SNPs, new candidate genes for anestrus occurrence, such as EML4, DST, SRTB, MEAF, PHF1, PPMIB and PREPL, including 11 lncRNAs and a snoRNA were identified. Therefore, our study highlighted novel genetic mechanisms involved with the failure to display pubertal estrus in pigs, contributing to unraveling the genetic architecture of anestrus in pigs and other species. The use of genomic methodologies is a promising tool to help the early identification of gilts with potential reproductive problems associated with anestrus.</p>","PeriodicalId":18259,"journal":{"name":"Mammalian Genome","volume":" ","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mammalian Genome","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00335-025-10159-3","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Anestrus, an infertility condition that affects several animal' species, is characterized by failing to display estrus. In pig production, it leads to the culling of 5 to 15% of the replacement gilts, resulting in significant losses impairing the swine female longevity. Despite that, little is known about the genetic mechanisms involved with anestrus in pigs. Hence, this study evaluated cyclic and non-cyclic F1 Landrace × Large White gilts to identify genomic regions associated with failure to display pubertal estrus through a genome-wide association study (GWAS), highlighting possible candidate genes involved with this condition in swine. Tissue samples were collected at 219.8 ± 4.7 days of age and genotyped with the PorcineSNP50 BeadChip from Illumina. In the GWAS, a SNP in the EML4 gene located on chromosome 3 (SSC3) was moderately associated with anestrus. The other 14 SNPs suggestively associated with anestrus were identified on SSCs 1, 3, 6, 7, 9 and 15. Investigating the regions close to those SNPs, new candidate genes for anestrus occurrence, such as EML4, DST, SRTB, MEAF, PHF1, PPMIB and PREPL, including 11 lncRNAs and a snoRNA were identified. Therefore, our study highlighted novel genetic mechanisms involved with the failure to display pubertal estrus in pigs, contributing to unraveling the genetic architecture of anestrus in pigs and other species. The use of genomic methodologies is a promising tool to help the early identification of gilts with potential reproductive problems associated with anestrus.
期刊介绍:
Mammalian Genome focuses on the experimental, theoretical and technical aspects of genetics, genomics, epigenetics and systems biology in mouse, human and other mammalian species, with an emphasis on the relationship between genotype and phenotype, elucidation of biological and disease pathways as well as experimental aspects of interventions, therapeutics, and precision medicine. The journal aims to publish high quality original papers that present novel findings in all areas of mammalian genetic research as well as review articles on areas of topical interest. The journal will also feature commentaries and editorials to inform readers of breakthrough discoveries as well as issues of research standards, policies and ethics.