Investigating PFOS-induced structural changes and aggregation in hen egg white lysozyme: spectroscopic and molecular insights.

IF 2.4 3区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Rushali Dudure, Ritika Joshi, Pulak Pritam, Alok Kumar Panda, Sujit Kumar Ghosh, Manojkumar Jadhao
{"title":"Investigating PFOS-induced structural changes and aggregation in hen egg white lysozyme: spectroscopic and molecular insights.","authors":"Rushali Dudure, Ritika Joshi, Pulak Pritam, Alok Kumar Panda, Sujit Kumar Ghosh, Manojkumar Jadhao","doi":"10.1080/07391102.2025.2559353","DOIUrl":null,"url":null,"abstract":"<p><p>The widespread manufacture and use of perfluoroalkyl substances (PFAS) has jeopardized human health & environment tremendously, thereby becoming a grave cause of concern for the thriving ecosystem. The current understanding of PFAS on protein aggregation is still in the early stage. Thus, the current study investigates how Perfluorooctanesulfonic acid (PFOS) affects the Lysozyme (HEWL), a protein that typically aggregates in acidic and high temperatures. Our study employed diverse techniques, including spectroscopy, thermal analysis, and <i>in silico</i> modeling, to gain intriguing insights about the same. Using a combination of steady-state fluorescence spectroscopy, ITC, molecular docking, molecular dynamic simulation and circular dichroism, our study reveals strong and significant PFOS and HEWL interactions characterized by hydrogen bonding, hydrophobic forces, and ionic interactions. PFOS significantly alters the secondary structure of HEWL, as evidenced by circular dichroism and synchronous fluorescence spectroscopy. Increased PFOS concentrations caused HEWL aggregation at room temperature (25 <sup>º</sup>C) and under physiological conditions (pH 7.4 and 37 <sup>º</sup>C), as is substantiated through different assays. Protein aggregation was found to rapidly accelerate at 37 <sup>º</sup>C, providing new insights into the process. Our findings shed light on the health risks of PFOS exposure through protein aggregation, contributing to environmental toxicology progress.</p>","PeriodicalId":15272,"journal":{"name":"Journal of Biomolecular Structure & Dynamics","volume":" ","pages":"1-19"},"PeriodicalIF":2.4000,"publicationDate":"2025-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomolecular Structure & Dynamics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/07391102.2025.2559353","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The widespread manufacture and use of perfluoroalkyl substances (PFAS) has jeopardized human health & environment tremendously, thereby becoming a grave cause of concern for the thriving ecosystem. The current understanding of PFAS on protein aggregation is still in the early stage. Thus, the current study investigates how Perfluorooctanesulfonic acid (PFOS) affects the Lysozyme (HEWL), a protein that typically aggregates in acidic and high temperatures. Our study employed diverse techniques, including spectroscopy, thermal analysis, and in silico modeling, to gain intriguing insights about the same. Using a combination of steady-state fluorescence spectroscopy, ITC, molecular docking, molecular dynamic simulation and circular dichroism, our study reveals strong and significant PFOS and HEWL interactions characterized by hydrogen bonding, hydrophobic forces, and ionic interactions. PFOS significantly alters the secondary structure of HEWL, as evidenced by circular dichroism and synchronous fluorescence spectroscopy. Increased PFOS concentrations caused HEWL aggregation at room temperature (25 ºC) and under physiological conditions (pH 7.4 and 37 ºC), as is substantiated through different assays. Protein aggregation was found to rapidly accelerate at 37 ºC, providing new insights into the process. Our findings shed light on the health risks of PFOS exposure through protein aggregation, contributing to environmental toxicology progress.

研究全氟辛烷磺酸诱导的蛋清溶菌酶的结构变化和聚集:光谱和分子的见解。
全氟烷基物质(PFAS)的广泛生产和使用极大地危害了人类健康和环境,从而成为蓬勃发展的生态系统的严重问题。目前对PFAS对蛋白质聚集作用的认识还处于早期阶段。因此,目前的研究调查了全氟辛烷磺酸(PFOS)如何影响溶菌酶(HEWL),一种通常在酸性和高温下聚集的蛋白质。我们的研究采用了多种技术,包括光谱学、热分析和计算机建模,以获得关于相同的有趣见解。结合稳态荧光光谱、ITC、分子对接、分子动力学模拟和圆二色,我们的研究揭示了PFOS和HEWL之间强烈而显著的相互作用,其特征是氢键、疏水力和离子相互作用。圆二色性和同步荧光光谱表明,全氟辛烷磺酸显著改变了HEWL的二级结构。通过不同的实验证实,PFOS浓度的增加在室温(25ºC)和生理条件(pH 7.4和37ºC)下引起HEWL聚集。研究发现,蛋白质聚集在37℃时迅速加速,为这一过程提供了新的见解。我们的研究结果通过蛋白质聚集揭示了全氟辛烷磺酸暴露的健康风险,有助于环境毒理学的进展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Biomolecular Structure & Dynamics
Journal of Biomolecular Structure & Dynamics 生物-生化与分子生物学
CiteScore
8.90
自引率
9.10%
发文量
597
审稿时长
2 months
期刊介绍: The Journal of Biomolecular Structure and Dynamics welcomes manuscripts on biological structure, dynamics, interactions and expression. The Journal is one of the leading publications in high end computational science, atomic structural biology, bioinformatics, virtual drug design, genomics and biological networks.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信