{"title":"Assessing accuracy and legitimacy of multimodal large language models on Japan Diagnostic Radiology Board Examination.","authors":"Yuichiro Hirano, Soichiro Miki, Yosuke Yamagishi, Shouhei Hanaoka, Takahiro Nakao, Tomohiro Kikuchi, Yuta Nakamura, Yukihiro Nomura, Takeharu Yoshikawa, Osamu Abe","doi":"10.1007/s11604-025-01861-y","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>To assess and compare the accuracy and legitimacy of multimodal large language models (LLMs) on the Japan Diagnostic Radiology Board Examination (JDRBE).</p><p><strong>Materials and methods: </strong>The dataset comprised questions from JDRBE 2021, 2023, and 2024, with ground-truth answers established through consensus among multiple board-certified diagnostic radiologists. Questions without associated images and those lacking unanimous agreement on answers were excluded. Eight LLMs were evaluated: GPT-4 Turbo, GPT-4o, GPT-4.5, GPT-4.1, o3, o4-mini, Claude 3.7 Sonnet, and Gemini 2.5 Pro. Each model was evaluated under two conditions: with inputting images (vision) and without (text-only). Performance differences between the conditions were assessed using McNemar's exact test. Two diagnostic radiologists (with 2 and 18 years of experience) independently rated the legitimacy of responses from four models (GPT-4 Turbo, Claude 3.7 Sonnet, o3, and Gemini 2.5 Pro) using a five-point Likert scale, blinded to model identity. Legitimacy scores were analyzed using Friedman's test, followed by pairwise Wilcoxon signed-rank tests with Holm correction.</p><p><strong>Results: </strong>The dataset included 233 questions. Under the vision condition, o3 achieved the highest accuracy at 72%, followed by o4-mini (70%) and Gemini 2.5 Pro (70%). Under the text-only condition, o3 topped the list with an accuracy of 67%. Addition of image input significantly improved the accuracy of two models (Gemini 2.5 Pro and GPT-4.5), but not the others. Both o3 and Gemini 2.5 Pro received significantly higher legitimacy scores than GPT-4 Turbo and Claude 3.7 Sonnet from both raters.</p><p><strong>Conclusion: </strong>Recent multimodal LLMs, particularly o3 and Gemini 2.5 Pro, have demonstrated remarkable progress on JDRBE questions, reflecting their rapid evolution in diagnostic radiology. Eight multimodal large language models were evaluated on the Japan Diagnostic Radiology Board Examination. OpenAI's o3 and Google DeepMind's Gemini 2.5 Pro achieved high accuracy rates (72% and 70%) and received good legitimacy scores from human raters, demonstrating steady progress.</p>","PeriodicalId":14691,"journal":{"name":"Japanese Journal of Radiology","volume":" ","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2025-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Japanese Journal of Radiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s11604-025-01861-y","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose: To assess and compare the accuracy and legitimacy of multimodal large language models (LLMs) on the Japan Diagnostic Radiology Board Examination (JDRBE).
Materials and methods: The dataset comprised questions from JDRBE 2021, 2023, and 2024, with ground-truth answers established through consensus among multiple board-certified diagnostic radiologists. Questions without associated images and those lacking unanimous agreement on answers were excluded. Eight LLMs were evaluated: GPT-4 Turbo, GPT-4o, GPT-4.5, GPT-4.1, o3, o4-mini, Claude 3.7 Sonnet, and Gemini 2.5 Pro. Each model was evaluated under two conditions: with inputting images (vision) and without (text-only). Performance differences between the conditions were assessed using McNemar's exact test. Two diagnostic radiologists (with 2 and 18 years of experience) independently rated the legitimacy of responses from four models (GPT-4 Turbo, Claude 3.7 Sonnet, o3, and Gemini 2.5 Pro) using a five-point Likert scale, blinded to model identity. Legitimacy scores were analyzed using Friedman's test, followed by pairwise Wilcoxon signed-rank tests with Holm correction.
Results: The dataset included 233 questions. Under the vision condition, o3 achieved the highest accuracy at 72%, followed by o4-mini (70%) and Gemini 2.5 Pro (70%). Under the text-only condition, o3 topped the list with an accuracy of 67%. Addition of image input significantly improved the accuracy of two models (Gemini 2.5 Pro and GPT-4.5), but not the others. Both o3 and Gemini 2.5 Pro received significantly higher legitimacy scores than GPT-4 Turbo and Claude 3.7 Sonnet from both raters.
Conclusion: Recent multimodal LLMs, particularly o3 and Gemini 2.5 Pro, have demonstrated remarkable progress on JDRBE questions, reflecting their rapid evolution in diagnostic radiology. Eight multimodal large language models were evaluated on the Japan Diagnostic Radiology Board Examination. OpenAI's o3 and Google DeepMind's Gemini 2.5 Pro achieved high accuracy rates (72% and 70%) and received good legitimacy scores from human raters, demonstrating steady progress.
期刊介绍:
Japanese Journal of Radiology is a peer-reviewed journal, officially published by the Japan Radiological Society. The main purpose of the journal is to provide a forum for the publication of papers documenting recent advances and new developments in the field of radiology in medicine and biology. The scope of Japanese Journal of Radiology encompasses but is not restricted to diagnostic radiology, interventional radiology, radiation oncology, nuclear medicine, radiation physics, and radiation biology. Additionally, the journal covers technical and industrial innovations. The journal welcomes original articles, technical notes, review articles, pictorial essays and letters to the editor. The journal also provides announcements from the boards and the committees of the society. Membership in the Japan Radiological Society is not a prerequisite for submission. Contributions are welcomed from all parts of the world.