On the congruence theorem for valued division algebras

IF 0.5 4区 数学 Q3 MATHEMATICS
Huynh Viet Khanh, Nguyen Duc Anh Khoa
{"title":"On the congruence theorem for valued division algebras","authors":"Huynh Viet Khanh,&nbsp;Nguyen Duc Anh Khoa","doi":"10.1007/s00013-025-02149-3","DOIUrl":null,"url":null,"abstract":"<div><p>Let <i>K</i> be a field equipped with a Henselian valuation, and let <i>D</i> be a tame central division algebra over the field <i>K</i>. Denote by <span>\\(\\textrm{TK}_1(D)\\)</span> the torsion subgroup of the Whitehead group <span>\\(\\textrm{K}_1(D) = D^*/D'\\)</span>, where <span>\\(D^*\\)</span> is the multiplicative group of <i>D</i> and <span>\\(D'\\)</span> is its derived subgroup. Let <span>\\(\\textbf{G}\\)</span> be the subgroup of <span>\\(D^*\\)</span> such that <span>\\(\\textrm{TK}_1(D) = \\textbf{G}/D'\\)</span>. In this note, we prove that either <span>\\((1 + M_D) \\cap \\textbf{G} \\subseteq D'\\)</span>, or the residue field <span>\\(\\overline{K}\\)</span> has characteristic <span>\\(p &gt; 0\\)</span> and the group <span>\\(\\textbf{H}:= ((1 + M_D) \\cap \\textbf{G})D'/D'\\)</span> is a <i>p</i>-group. Additionally, we provide examples of valued division algebras with non-trivial <span>\\(\\textbf{H}\\)</span>. This illustrates that, in contrast to the reduced Whitehead group <span>\\(\\textrm{SK}_1(D)\\)</span>, a complete analogue of the congruence theorem does not hold for <span>\\(\\textrm{TK}_1(D)\\)</span>.</p></div>","PeriodicalId":8346,"journal":{"name":"Archiv der Mathematik","volume":"125 4","pages":"369 - 377"},"PeriodicalIF":0.5000,"publicationDate":"2025-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archiv der Mathematik","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00013-025-02149-3","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let K be a field equipped with a Henselian valuation, and let D be a tame central division algebra over the field K. Denote by \(\textrm{TK}_1(D)\) the torsion subgroup of the Whitehead group \(\textrm{K}_1(D) = D^*/D'\), where \(D^*\) is the multiplicative group of D and \(D'\) is its derived subgroup. Let \(\textbf{G}\) be the subgroup of \(D^*\) such that \(\textrm{TK}_1(D) = \textbf{G}/D'\). In this note, we prove that either \((1 + M_D) \cap \textbf{G} \subseteq D'\), or the residue field \(\overline{K}\) has characteristic \(p > 0\) and the group \(\textbf{H}:= ((1 + M_D) \cap \textbf{G})D'/D'\) is a p-group. Additionally, we provide examples of valued division algebras with non-trivial \(\textbf{H}\). This illustrates that, in contrast to the reduced Whitehead group \(\textrm{SK}_1(D)\), a complete analogue of the congruence theorem does not hold for \(\textrm{TK}_1(D)\).

关于值除法代数的同余定理
设K是一个具有Henselian值的域,D是域K上的一个驯服的中心除法代数。用\(\textrm{TK}_1(D)\)表示Whitehead群\(\textrm{K}_1(D) = D^*/D'\)的挠子群,其中\(D^*\)是D的乘法群,\(D'\)是它的派生子群。设\(\textbf{G}\)为\(D^*\)的子组,这样\(\textrm{TK}_1(D) = \textbf{G}/D'\)。在这篇笔记中,我们证明了\((1 + M_D) \cap \textbf{G} \subseteq D'\)或剩余域\(\overline{K}\)中有一个具有特征\(p > 0\),并且群\(\textbf{H}:= ((1 + M_D) \cap \textbf{G})D'/D'\)是p群。此外,我们还提供了具有非平凡\(\textbf{H}\)的值除法代数的例子。这说明,与简化的Whitehead群\(\textrm{SK}_1(D)\)相反,同余定理的完全类比并不适用于\(\textrm{TK}_1(D)\)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Archiv der Mathematik
Archiv der Mathematik 数学-数学
CiteScore
1.10
自引率
0.00%
发文量
117
审稿时长
4-8 weeks
期刊介绍: Archiv der Mathematik (AdM) publishes short high quality research papers in every area of mathematics which are not overly technical in nature and addressed to a broad readership.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信