The affine group of a local field is Hermitian

IF 0.5 4区 数学 Q3 MATHEMATICS
Max Carter
{"title":"The affine group of a local field is Hermitian","authors":"Max Carter","doi":"10.1007/s00013-025-02158-2","DOIUrl":null,"url":null,"abstract":"<div><p>The question of whether the group <span>\\({\\mathbb {Q}}_p \\rtimes {\\mathbb {Q}}_p^*\\)</span> is Hermitian has been stated as an open question in multiple sources in the literature, even as recently as a paper by R. Palma published in 2015. In this note, we confirm that this group is Hermitian by proving the following more general theorem: given any local field <span>\\({\\mathbb {K}}\\)</span>, the affine group <span>\\({\\mathbb {K}} \\rtimes {\\mathbb {K}}^*\\)</span> is a Hermitian group. The proof is a consequence of results about Hermitian Banach <span>\\(*\\)</span>-algebras from the 1970s. In the case that <span>\\({\\mathbb {K}}\\)</span> is a non-archimedean local field, this result produces examples of totally disconnected locally compact Hermitian groups with exponential growth, and these are the first examples of groups satisfying these properties. This answers a second question of Palma about the existence of such groups.</p></div>","PeriodicalId":8346,"journal":{"name":"Archiv der Mathematik","volume":"125 4","pages":"361 - 367"},"PeriodicalIF":0.5000,"publicationDate":"2025-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archiv der Mathematik","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00013-025-02158-2","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

The question of whether the group \({\mathbb {Q}}_p \rtimes {\mathbb {Q}}_p^*\) is Hermitian has been stated as an open question in multiple sources in the literature, even as recently as a paper by R. Palma published in 2015. In this note, we confirm that this group is Hermitian by proving the following more general theorem: given any local field \({\mathbb {K}}\), the affine group \({\mathbb {K}} \rtimes {\mathbb {K}}^*\) is a Hermitian group. The proof is a consequence of results about Hermitian Banach \(*\)-algebras from the 1970s. In the case that \({\mathbb {K}}\) is a non-archimedean local field, this result produces examples of totally disconnected locally compact Hermitian groups with exponential growth, and these are the first examples of groups satisfying these properties. This answers a second question of Palma about the existence of such groups.

局域场的仿射群是厄米的
在文献中,关于\({\mathbb {Q}}_p \rtimes {\mathbb {Q}}_p^*\)群是否为厄米特的问题在多个来源中都被认为是一个悬而未决的问题,甚至在R. Palma于2015年发表的一篇论文中也是如此。在这篇笔记中,我们通过证明以下更一般的定理来确认这个群是厄米群:给定任何局部场\({\mathbb {K}}\),仿射群\({\mathbb {K}} \rtimes {\mathbb {K}}^*\)是厄米群。这个证明是20世纪70年代关于厄米巴拿赫\(*\) -代数的结果的结果。在\({\mathbb {K}}\)是一个非阿基米德局部场的情况下,这个结果产生了具有指数增长的完全不连通的局部紧化厄米群的例子,这些是满足这些性质的群的第一个例子。这就回答了帕尔马关于这类群体存在的第二个问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Archiv der Mathematik
Archiv der Mathematik 数学-数学
CiteScore
1.10
自引率
0.00%
发文量
117
审稿时长
4-8 weeks
期刊介绍: Archiv der Mathematik (AdM) publishes short high quality research papers in every area of mathematics which are not overly technical in nature and addressed to a broad readership.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信