{"title":"Generalized Baumslag–Solitar Groups Universally Equivalent to Tree Groups","authors":"F. A. Dudkin","doi":"10.1007/s10469-025-09790-5","DOIUrl":null,"url":null,"abstract":"<p>A finitely generated group that acts on a tree so that all vertex and edge stabilizers are infinite cyclic groups is called a generalized Baumslag–Solitar group (<i>GBS</i> group). Every <i>GBS</i> group is the fundamental group <i>π</i><sub>1</sub>(𝔸) of a suitable labeled graph 𝔸. If 𝔸 is a labeled tree, then we call <i>π</i><sub>1</sub>(𝔸) a tree GBS group. It is known that <i>GBS</i> groups isomorphic to tree groups are themselves tree groups. It is shown that <i>GBS</i> groups universally equivalent to tree groups do not have to be tree groups. Moreover, we give a description of all <i>GBS</i> groups that are universally equivalent to tree groups.</p>","PeriodicalId":7422,"journal":{"name":"Algebra and Logic","volume":"63 4","pages":"249 - 257"},"PeriodicalIF":0.6000,"publicationDate":"2025-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebra and Logic","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10469-025-09790-5","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"LOGIC","Score":null,"Total":0}
引用次数: 0
Abstract
A finitely generated group that acts on a tree so that all vertex and edge stabilizers are infinite cyclic groups is called a generalized Baumslag–Solitar group (GBS group). Every GBS group is the fundamental group π1(𝔸) of a suitable labeled graph 𝔸. If 𝔸 is a labeled tree, then we call π1(𝔸) a tree GBS group. It is known that GBS groups isomorphic to tree groups are themselves tree groups. It is shown that GBS groups universally equivalent to tree groups do not have to be tree groups. Moreover, we give a description of all GBS groups that are universally equivalent to tree groups.
期刊介绍:
This bimonthly journal publishes results of the latest research in the areas of modern general algebra and of logic considered primarily from an algebraic viewpoint. The algebraic papers, constituting the major part of the contents, are concerned with studies in such fields as ordered, almost torsion-free, nilpotent, and metabelian groups; isomorphism rings; Lie algebras; Frattini subgroups; and clusters of algebras. In the area of logic, the periodical covers such topics as hierarchical sets, logical automata, and recursive functions.
Algebra and Logic is a translation of ALGEBRA I LOGIKA, a publication of the Siberian Fund for Algebra and Logic and the Institute of Mathematics of the Siberian Branch of the Russian Academy of Sciences.
All articles are peer-reviewed.