General Position Sets, Colinear Sets, and Sierpiński Product Graphs

IF 0.7 4区 数学 Q4 MATHEMATICS, APPLIED
Jing Tian, Sandi Klavžar
{"title":"General Position Sets, Colinear Sets, and Sierpiński Product Graphs","authors":"Jing Tian,&nbsp;Sandi Klavžar","doi":"10.1007/s00026-024-00732-z","DOIUrl":null,"url":null,"abstract":"<div><p>Let <span>\\(G \\otimes _f H\\)</span> denote the Sierpiński product of graphs <i>G</i> and <i>H</i> with respect to the function <i>f</i>. The Sierpiński general position number <span>\\(\\textrm{gp}{_{\\textrm{S}}}(G,H)\\)</span> is introduced as the cardinality of a largest general position set in <span>\\(G \\otimes _f H\\)</span> over all possible functions <i>f</i>. Similarly, the lower Sierpiński general position number <span>\\(\\underline{\\textrm{gp}}{_{\\textrm{S}}}(G,H)\\)</span> is the corresponding smallest cardinality. The concept of vertex-colinear sets is introduced. Bounds for the general position number in terms of extremal vertex-colinear sets, and bounds for the (lower) Sierpiński general position number are proved. The extremal graphs are investigated. Formulas for the (lower) Sierpiński general position number of the Sierpiński products with <span>\\(K_2\\)</span> as the first factor are deduced. It is proved that if <span>\\(m,n\\ge 2\\)</span>, then <span>\\(\\textrm{gp}{_{\\textrm{S}}}(K_m,K_n) = m(n-1)\\)</span>, and that if <span>\\(n\\ge 2\\,m-2\\)</span>, then <span>\\(\\underline{\\textrm{gp}}{_{\\textrm{S}}}(K_m,K_n) = m(n-m+1)\\)</span>.</p></div>","PeriodicalId":50769,"journal":{"name":"Annals of Combinatorics","volume":"29 3","pages":"837 - 852"},"PeriodicalIF":0.7000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Combinatorics","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00026-024-00732-z","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Let \(G \otimes _f H\) denote the Sierpiński product of graphs G and H with respect to the function f. The Sierpiński general position number \(\textrm{gp}{_{\textrm{S}}}(G,H)\) is introduced as the cardinality of a largest general position set in \(G \otimes _f H\) over all possible functions f. Similarly, the lower Sierpiński general position number \(\underline{\textrm{gp}}{_{\textrm{S}}}(G,H)\) is the corresponding smallest cardinality. The concept of vertex-colinear sets is introduced. Bounds for the general position number in terms of extremal vertex-colinear sets, and bounds for the (lower) Sierpiński general position number are proved. The extremal graphs are investigated. Formulas for the (lower) Sierpiński general position number of the Sierpiński products with \(K_2\) as the first factor are deduced. It is proved that if \(m,n\ge 2\), then \(\textrm{gp}{_{\textrm{S}}}(K_m,K_n) = m(n-1)\), and that if \(n\ge 2\,m-2\), then \(\underline{\textrm{gp}}{_{\textrm{S}}}(K_m,K_n) = m(n-m+1)\).

Abstract Image

Abstract Image

一般位置集,共线性集,和Sierpiński产品图
设\(G \otimes _f H\)表示图形G和H相对于函数f的Sierpiński积。Sierpiński一般位置数\(\textrm{gp}{_{\textrm{S}}}(G,H)\)被引入为\(G \otimes _f H\)中所有可能函数f上最大一般位置集的基数。类似地,较低的Sierpiński一般位置数\(\underline{\textrm{gp}}{_{\textrm{S}}}(G,H)\)是相应的最小基数。引入了顶点共线集的概念。证明了一般位置数用顶点共线集表示的界,以及(下)Sierpiński一般位置数的界。研究了极值图。推导出以\(K_2\)为第一因子的Sierpiński产品的(下)Sierpiński一般位置数的公式。证明了如果\(m,n\ge 2\),则\(\textrm{gp}{_{\textrm{S}}}(K_m,K_n) = m(n-1)\),如果\(n\ge 2\,m-2\),则\(\underline{\textrm{gp}}{_{\textrm{S}}}(K_m,K_n) = m(n-m+1)\)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Annals of Combinatorics
Annals of Combinatorics 数学-应用数学
CiteScore
1.00
自引率
0.00%
发文量
56
审稿时长
>12 weeks
期刊介绍: Annals of Combinatorics publishes outstanding contributions to combinatorics with a particular focus on algebraic and analytic combinatorics, as well as the areas of graph and matroid theory. Special regard will be given to new developments and topics of current interest to the community represented by our editorial board. The scope of Annals of Combinatorics is covered by the following three tracks: Algebraic Combinatorics: Enumerative combinatorics, symmetric functions, Schubert calculus / Combinatorial Hopf algebras, cluster algebras, Lie algebras, root systems, Coxeter groups / Discrete geometry, tropical geometry / Discrete dynamical systems / Posets and lattices Analytic and Algorithmic Combinatorics: Asymptotic analysis of counting sequences / Bijective combinatorics / Univariate and multivariable singularity analysis / Combinatorics and differential equations / Resolution of hard combinatorial problems by making essential use of computers / Advanced methods for evaluating counting sequences or combinatorial constants / Complexity and decidability aspects of combinatorial sequences / Combinatorial aspects of the analysis of algorithms Graphs and Matroids: Structural graph theory, graph minors, graph sparsity, decompositions and colorings / Planar graphs and topological graph theory, geometric representations of graphs / Directed graphs, posets / Metric graph theory / Spectral and algebraic graph theory / Random graphs, extremal graph theory / Matroids, oriented matroids, matroid minors / Algorithmic approaches
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信