Enhanced sensitivity, stability, and dynamic behavior of the Biswas-Milovic equation with Kerr-Law non-linearity

IF 1.6 3区 数学 Q1 MATHEMATICS
Nadia Cheemaa, H. M. A. Siddiqui, Bismah Yousaf, Ahmet Bekir, Mouna Jeridi, Norah Alomayrah
{"title":"Enhanced sensitivity, stability, and dynamic behavior of the Biswas-Milovic equation with Kerr-Law non-linearity","authors":"Nadia Cheemaa,&nbsp;H. M. A. Siddiqui,&nbsp;Bismah Yousaf,&nbsp;Ahmet Bekir,&nbsp;Mouna Jeridi,&nbsp;Norah Alomayrah","doi":"10.1007/s13324-025-01111-4","DOIUrl":null,"url":null,"abstract":"<div><p>This work derives novel exact solutions of the Biswas–Milovic nonlinear Schrödinger equation by employing the innovative Extended Modified Auxiliary Equation Mapping Technique, augmented with enhanced sensitivity analysis. The resulting bright, kink, anti-kink, and periodic soliton solutions provide deep insights into the complex dynamics of nonlinear wave propagation. To unravel the intricate behaviors of these solitons, we analyze phase trajectories, density distributions, and streamlines, with a particular focus on their sensitivity to initial conditions. Stability is rigorously evaluated through a Hamiltonian formalism, ensuring both analytical rigor and structural robustness. Collectively, these findings enrich the theoretical understanding of soliton dynamics and open new pathways for practical applications in advanced physical systems.</p></div>","PeriodicalId":48860,"journal":{"name":"Analysis and Mathematical Physics","volume":"15 5","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2025-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analysis and Mathematical Physics","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s13324-025-01111-4","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

This work derives novel exact solutions of the Biswas–Milovic nonlinear Schrödinger equation by employing the innovative Extended Modified Auxiliary Equation Mapping Technique, augmented with enhanced sensitivity analysis. The resulting bright, kink, anti-kink, and periodic soliton solutions provide deep insights into the complex dynamics of nonlinear wave propagation. To unravel the intricate behaviors of these solitons, we analyze phase trajectories, density distributions, and streamlines, with a particular focus on their sensitivity to initial conditions. Stability is rigorously evaluated through a Hamiltonian formalism, ensuring both analytical rigor and structural robustness. Collectively, these findings enrich the theoretical understanding of soliton dynamics and open new pathways for practical applications in advanced physical systems.

具有Kerr-Law非线性的Biswas-Milovic方程的增强灵敏度,稳定性和动态行为
这项工作通过采用创新的扩展修正辅助方程映射技术,增强了灵敏度分析,推导出Biswas-Milovic非线性Schrödinger方程的新颖精确解。由此产生的明亮、扭结、反扭结和周期孤子解为非线性波传播的复杂动力学提供了深刻的见解。为了揭示这些孤子的复杂行为,我们分析了相轨迹、密度分布和流线,特别关注了它们对初始条件的敏感性。稳定性通过哈密顿形式进行严格评估,确保分析的严谨性和结构的稳健性。总的来说,这些发现丰富了对孤子动力学的理论认识,并为先进物理系统的实际应用开辟了新的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Analysis and Mathematical Physics
Analysis and Mathematical Physics MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
2.70
自引率
0.00%
发文量
122
期刊介绍: Analysis and Mathematical Physics (AMP) publishes current research results as well as selected high-quality survey articles in real, complex, harmonic; and geometric analysis originating and or having applications in mathematical physics. The journal promotes dialog among specialists in these areas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信