Yumei Li, Bingqian Deng, Jiexin Wang, Jialong Li, Wenbin An, Jian Fan, Peng Sun
{"title":"Molybdenum substitution for enhanced activation of persulfate in LaFeO3-based catalysts: reaction species and catalytic mechanism","authors":"Yumei Li, Bingqian Deng, Jiexin Wang, Jialong Li, Wenbin An, Jian Fan, Peng Sun","doi":"10.1007/s11706-025-0721-4","DOIUrl":null,"url":null,"abstract":"<div><p>A molybdenum (Mo)-modified LaFeO<sub>3</sub> (LFMO) perovskite catalyst was synthesized to activate peroxymonosulfate (PMS) for the degradation of indole in solution. The catalyst was characterized by XRD, SEM, and XPS. Results indicate that LFMO possesses a higher specific surface area and more catalytic active sites compared to unmodified LaFeO<sub>3</sub>. XPS analysis reveals that the activation of PMS is mediated by Fe<sup>2+</sup>/Fe<sup>3+</sup> and Mo<sup>4+</sup>/Mo<sup>6+</sup> reduction–oxidation cycles. Oxygen vacancies generated by molybdenum substitution serve as reaction sites, which accelerate the dissociation of PMS and the production of reactive oxygen species. Chemical quenching experiments and EPR spectroscopic analyses were employed to elucidate the mechanism, highlighting the significant role of non-radical species in the removal of indole. Under optimal reaction conditions, the degradation efficiency of indole reached 90.53% within 30 min, demonstrating strong anti-interference against inorganic anions and natural organic matter. LFMO particles exhibit sustained catalytic activity and stability over five consecutive cycles. This LFMO/PMS system provides valuable insights for the development of non-radical degradation pathways based on PMS.</p></div>","PeriodicalId":572,"journal":{"name":"Frontiers of Materials Science","volume":"19 3","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers of Materials Science","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s11706-025-0721-4","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
A molybdenum (Mo)-modified LaFeO3 (LFMO) perovskite catalyst was synthesized to activate peroxymonosulfate (PMS) for the degradation of indole in solution. The catalyst was characterized by XRD, SEM, and XPS. Results indicate that LFMO possesses a higher specific surface area and more catalytic active sites compared to unmodified LaFeO3. XPS analysis reveals that the activation of PMS is mediated by Fe2+/Fe3+ and Mo4+/Mo6+ reduction–oxidation cycles. Oxygen vacancies generated by molybdenum substitution serve as reaction sites, which accelerate the dissociation of PMS and the production of reactive oxygen species. Chemical quenching experiments and EPR spectroscopic analyses were employed to elucidate the mechanism, highlighting the significant role of non-radical species in the removal of indole. Under optimal reaction conditions, the degradation efficiency of indole reached 90.53% within 30 min, demonstrating strong anti-interference against inorganic anions and natural organic matter. LFMO particles exhibit sustained catalytic activity and stability over five consecutive cycles. This LFMO/PMS system provides valuable insights for the development of non-radical degradation pathways based on PMS.
期刊介绍:
Frontiers of Materials Science is a peer-reviewed international journal that publishes high quality reviews/mini-reviews, full-length research papers, and short Communications recording the latest pioneering studies on all aspects of materials science. It aims at providing a forum to promote communication and exchange between scientists in the worldwide materials science community.
The subjects are seen from international and interdisciplinary perspectives covering areas including (but not limited to):
Biomaterials including biomimetics and biomineralization;
Nano materials;
Polymers and composites;
New metallic materials;
Advanced ceramics;
Materials modeling and computation;
Frontier materials synthesis and characterization;
Novel methods for materials manufacturing;
Materials performance;
Materials applications in energy, information and biotechnology.