Boundary layer profiles of positive solutions for logistic equations with sublinear nonlinearity on the boundary

IF 0.5 4区 数学 Q3 MATHEMATICS
Kenichiro Umezu
{"title":"Boundary layer profiles of positive solutions for logistic equations with sublinear nonlinearity on the boundary","authors":"Kenichiro Umezu","doi":"10.1007/s00013-025-02161-7","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we consider the logistic elliptic equation <span>\\(-\\Delta u = u- u^{p}\\)</span> in a smooth bounded domain <span>\\(\\Omega \\subset {\\mathbb {R}}^{N},\\)</span> <span>\\(N\\ge 2,\\)</span> equipped with the sublinear Neumann boundary condition <span>\\(\\frac{\\partial u}{\\partial \\nu } = \\mu u^{q}\\)</span> on <span>\\(\\partial \\Omega ,\\)</span> where <span>\\(0&lt;q&lt;1&lt;p,\\)</span> and <span>\\(\\mu \\ge 0\\)</span> is a parameter. With sub- and supersolutions and a comparison principle for the equation, we analyze the asymptotic profile of the unique positive solution for the equation as <span>\\(\\mu \\rightarrow \\infty .\\)</span></p></div>","PeriodicalId":8346,"journal":{"name":"Archiv der Mathematik","volume":"125 4","pages":"433 - 443"},"PeriodicalIF":0.5000,"publicationDate":"2025-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archiv der Mathematik","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00013-025-02161-7","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we consider the logistic elliptic equation \(-\Delta u = u- u^{p}\) in a smooth bounded domain \(\Omega \subset {\mathbb {R}}^{N},\) \(N\ge 2,\) equipped with the sublinear Neumann boundary condition \(\frac{\partial u}{\partial \nu } = \mu u^{q}\) on \(\partial \Omega ,\) where \(0<q<1<p,\) and \(\mu \ge 0\) is a parameter. With sub- and supersolutions and a comparison principle for the equation, we analyze the asymptotic profile of the unique positive solution for the equation as \(\mu \rightarrow \infty .\)

Abstract Image

Abstract Image

边界上具有次线性非线性的logistic方程正解的边界层轮廓
本文考虑logistic椭圆方程 \(-\Delta u = u- u^{p}\) 在光滑有界区域中 \(\Omega \subset {\mathbb {R}}^{N},\) \(N\ge 2,\) 具有次线性诺伊曼边界条件 \(\frac{\partial u}{\partial \nu } = \mu u^{q}\) on \(\partial \Omega ,\) 在哪里 \(0<q<1<p,\) 和 \(\mu \ge 0\) 是参数。利用该方程的子解和超解以及比较原理,我们分析了该方程的唯一正解的渐近轮廓 \(\mu \rightarrow \infty .\)
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Archiv der Mathematik
Archiv der Mathematik 数学-数学
CiteScore
1.10
自引率
0.00%
发文量
117
审稿时长
4-8 weeks
期刊介绍: Archiv der Mathematik (AdM) publishes short high quality research papers in every area of mathematics which are not overly technical in nature and addressed to a broad readership.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信