Open-CRB: Toward Open World Active Learning for 3D Object Detection

IF 18.6
Zhuoxiao Chen;Yadan Luo;Zixin Wang;Zijian Wang;Zi Huang
{"title":"Open-CRB: Toward Open World Active Learning for 3D Object Detection","authors":"Zhuoxiao Chen;Yadan Luo;Zixin Wang;Zijian Wang;Zi Huang","doi":"10.1109/TPAMI.2025.3575756","DOIUrl":null,"url":null,"abstract":"LiDAR-based 3D object detection has recently seen significant advancements through active learning (AL), attaining satisfactory performance by training on a small fraction of strategically selected point clouds. However, in real-world deployments where streaming point clouds may include unknown or novel objects, the ability of current AL methods to capture such objects remains unexplored. This paper investigates a more practical and challenging research task: Open World Active Learning for 3D Object Detection (OWAL-3D), aimed at acquiring informative point clouds with new concepts. To tackle this challenge, we propose a simple yet effective strategy called Open Label Conciseness (OLC), which mines novel 3D objects with minimal annotation costs. Our empirical results show that OLC successfully adapts the 3D detection model to the open world scenario with just a single round of selection. Any generic AL policy can then be integrated with the proposed OLC to efficiently address the OWAL-3D problem. Based on this, we introduce the Open-CRB framework, which seamlessly integrates OLC with our preliminary AL method, CRB, designed specifically for 3D object detection. We develop a comprehensive codebase for easy reproducing and future research, supporting 15 baseline methods (i.e., active learning, out-of-distribution detection and open world detection), 2 types of modern 3D detectors (i.e., one-stage SECOND and two-stage PV-RCNN) and 3 benchmark 3D datasets (i.e., KITTI, nuScenes and Waymo). Extensive experiments evidence that the proposed Open-CRB demonstrates superiority and flexibility in recognizing both novel and known classes with very limited labeling costs, compared to state-of-the-art baselines.","PeriodicalId":94034,"journal":{"name":"IEEE transactions on pattern analysis and machine intelligence","volume":"47 10","pages":"8336-8350"},"PeriodicalIF":18.6000,"publicationDate":"2025-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on pattern analysis and machine intelligence","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/11163594/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

LiDAR-based 3D object detection has recently seen significant advancements through active learning (AL), attaining satisfactory performance by training on a small fraction of strategically selected point clouds. However, in real-world deployments where streaming point clouds may include unknown or novel objects, the ability of current AL methods to capture such objects remains unexplored. This paper investigates a more practical and challenging research task: Open World Active Learning for 3D Object Detection (OWAL-3D), aimed at acquiring informative point clouds with new concepts. To tackle this challenge, we propose a simple yet effective strategy called Open Label Conciseness (OLC), which mines novel 3D objects with minimal annotation costs. Our empirical results show that OLC successfully adapts the 3D detection model to the open world scenario with just a single round of selection. Any generic AL policy can then be integrated with the proposed OLC to efficiently address the OWAL-3D problem. Based on this, we introduce the Open-CRB framework, which seamlessly integrates OLC with our preliminary AL method, CRB, designed specifically for 3D object detection. We develop a comprehensive codebase for easy reproducing and future research, supporting 15 baseline methods (i.e., active learning, out-of-distribution detection and open world detection), 2 types of modern 3D detectors (i.e., one-stage SECOND and two-stage PV-RCNN) and 3 benchmark 3D datasets (i.e., KITTI, nuScenes and Waymo). Extensive experiments evidence that the proposed Open-CRB demonstrates superiority and flexibility in recognizing both novel and known classes with very limited labeling costs, compared to state-of-the-art baselines.
Open- crb:面向3D目标检测的开放世界主动学习
基于激光雷达的3D目标检测最近通过主动学习(AL)取得了重大进展,通过在一小部分战略选择的点云上进行训练,获得了令人满意的性能。然而,在现实世界的部署中,流点云可能包含未知或新颖的对象,当前的人工智能方法捕获这些对象的能力仍未得到探索。本文研究了一个更实际和更具挑战性的研究任务:开放世界主动学习3D目标检测(OWAL-3D),旨在用新概念获取信息点云。为了应对这一挑战,我们提出了一种简单而有效的策略,称为开放标签简洁(OLC),它以最小的注释成本挖掘新的3D对象。我们的实证结果表明,OLC仅通过一轮选择就成功地使3D检测模型适应开放世界场景。然后,任何通用的人工智能策略都可以与提议的OLC集成,以有效地解决owl - 3d问题。在此基础上,我们引入了Open-CRB框架,该框架将OLC与我们专门为3D目标检测设计的初步人工智能方法CRB无缝集成。我们开发了一个全面的代码库,便于复制和未来的研究,支持15种基线方法(即主动学习,分布外检测和开放世界检测),2种类型的现代3D检测器(即一阶段SECOND和两阶段PV-RCNN)和3个基准3D数据集(即KITTI, nuScenes和Waymo)。大量的实验证明,与最先进的基线相比,所提出的Open-CRB在识别新类别和已知类别方面具有优势和灵活性,并且标签成本非常有限。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信