A New Strategy for Tunable Pore Size Polyamide Nanofiltration Membranes during the Interfacial Polymerization by the Dynamic Hydrophilic Site Resistance Balance of 3-Aminobenzenesulfonamide in the Aqueous Phase

IF 4.3 Q1 ENVIRONMENTAL SCIENCES
Yuqian Yang, Tiansheng Gao, Wenzhong Ma*, Haicun Yang, Qiuyan Bi, Jing Zhong and Hideto Matsuyama, 
{"title":"A New Strategy for Tunable Pore Size Polyamide Nanofiltration Membranes during the Interfacial Polymerization by the Dynamic Hydrophilic Site Resistance Balance of 3-Aminobenzenesulfonamide in the Aqueous Phase","authors":"Yuqian Yang,&nbsp;Tiansheng Gao,&nbsp;Wenzhong Ma*,&nbsp;Haicun Yang,&nbsp;Qiuyan Bi,&nbsp;Jing Zhong and Hideto Matsuyama,&nbsp;","doi":"10.1021/acsestwater.5c00737","DOIUrl":null,"url":null,"abstract":"<p >The growing demand for lithium-based materials stems predominantly from the rapid proliferation of renewable energy technologies. Given the growing demand for lithium, extracting the metal from salt lake brines has gained significant research attention. While positively charged nanofiltration (NF) membranes exhibit promising Mg<sup>2+</sup>/Li<sup>+</sup> separation efficacy, the interfacial polymerization technique remains constrained by the inherent permeability-selectivity trade-off. This study optimized the microstructure and surface properties of the polyamide (PA) separation layer by regulating the additional amount of 3-aminobenzenesulfonamide (ABSA) based on the principle of hydrophilic steric dynamic equilibrium. The best-performing membrane, with 0.05 ABSA added, was the polyethylenimine (PEI)/trimesoyl chloride (TMC) NF membrane sample (PEI/ABSA-0.05-TMC), which retained 93.7% of Mg<sup>2+</sup> and 28.4% of Li<sup>+</sup>. Compared to the PEI-TMC NF membrane without ABSA addition, water flux was increased from 12.5 L·m<sup>–2</sup>·h<sup>–1</sup>·bar<sup>–1</sup> to 17.7 L·m<sup>–2</sup>·h<sup>–1</sup>·bar<sup>–1</sup>, MWCO was adjusted from 584 to 487 Da, and the corresponding separating factor of <i>S</i><sub>Li,Mg</sub> increased from 8.51 to 13.3. Throughout prolonged experimental trials, the PEI/ABSA-0.05-TMC NF membrane demonstrated sustained separation stability. This work establishes a robust framework for optimizing NF membranes, providing a strategic pathway toward Mg<sup>2+</sup>/Li<sup>+</sup> separation technologies.</p>","PeriodicalId":93847,"journal":{"name":"ACS ES&T water","volume":"5 9","pages":"5739–5748"},"PeriodicalIF":4.3000,"publicationDate":"2025-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS ES&T water","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsestwater.5c00737","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The growing demand for lithium-based materials stems predominantly from the rapid proliferation of renewable energy technologies. Given the growing demand for lithium, extracting the metal from salt lake brines has gained significant research attention. While positively charged nanofiltration (NF) membranes exhibit promising Mg2+/Li+ separation efficacy, the interfacial polymerization technique remains constrained by the inherent permeability-selectivity trade-off. This study optimized the microstructure and surface properties of the polyamide (PA) separation layer by regulating the additional amount of 3-aminobenzenesulfonamide (ABSA) based on the principle of hydrophilic steric dynamic equilibrium. The best-performing membrane, with 0.05 ABSA added, was the polyethylenimine (PEI)/trimesoyl chloride (TMC) NF membrane sample (PEI/ABSA-0.05-TMC), which retained 93.7% of Mg2+ and 28.4% of Li+. Compared to the PEI-TMC NF membrane without ABSA addition, water flux was increased from 12.5 L·m–2·h–1·bar–1 to 17.7 L·m–2·h–1·bar–1, MWCO was adjusted from 584 to 487 Da, and the corresponding separating factor of SLi,Mg increased from 8.51 to 13.3. Throughout prolonged experimental trials, the PEI/ABSA-0.05-TMC NF membrane demonstrated sustained separation stability. This work establishes a robust framework for optimizing NF membranes, providing a strategic pathway toward Mg2+/Li+ separation technologies.

Abstract Image

基于3-氨基苯磺酰胺在水相中动态亲水性位电阻平衡的界面聚合过程中可调孔径聚酰胺纳滤膜的新策略
对锂基材料日益增长的需求主要源于可再生能源技术的迅速扩散。鉴于对锂的需求不断增长,从盐湖盐水中提取金属已经引起了重大的研究关注。虽然带正电的纳滤(NF)膜具有良好的Mg2+/Li+分离效果,但界面聚合技术仍然受到固有的渗透性-选择性权衡的限制。本研究基于亲水性立体动力平衡原理,通过调节3-氨基苯磺酸酰胺(ABSA)的添加量,优化聚酰胺(PA)分离层的微观结构和表面性能。当ABSA添加量为0.05时,聚乙烯亚胺(PEI)/三甲酰氯(TMC)纳滤膜样品(PEI/ABSA-0.05-TMC)的Mg2+保留率为93.7%,Li+保留率为28.4%。与未添加ABSA的peg - tmc纳滤膜相比,水通量从12.5 L·m-2·h-1·bar-1提高到17.7 L·m-2·h-1·bar-1, MWCO从584调整到487 Da, SLi、Mg的分离系数从8.51提高到13.3。经过长时间的实验,PEI/ABSA-0.05-TMC NF膜表现出持续的分离稳定性。这项工作为优化NF膜建立了一个强大的框架,为Mg2+/Li+分离技术提供了一条战略途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.40
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信