Hygroscopicity of Organic Compounds as a Function of Their Physicochemical Properties

Nagendra Raparthi*, Anthony S. Wexler and Ann M. Dillner, 
{"title":"Hygroscopicity of Organic Compounds as a Function of Their Physicochemical Properties","authors":"Nagendra Raparthi*,&nbsp;Anthony S. Wexler and Ann M. Dillner,&nbsp;","doi":"10.1021/acsestair.5c00061","DOIUrl":null,"url":null,"abstract":"<p >The interaction of organic aerosols with water vapor plays a crucial role in cloud processes but is still challenging to fully elucidate due to its complexity. Recently, we developed a water uptake methodology for particles collected on Teflon filters, enabling the quantification of both chemical composition and hygroscopicity of the same sample. In this study, the hygroscopicity of organic compounds with varying functionalities collected on Teflon filters was quantified, including dicarboxylic acids (malonic, glutaric, succinic), multifunctional dicarboxylic acids (tartaric, citric), sugars (glucose, levoglucosan), and a polyol (<i>meso</i>-erythritol) at three relative humidities (RHs: ≈84%, 90%, and 97%). The hygroscopicity parameter (κ) was derived and compared to previous studies. A regression model was developed that predicts κ as a function of physicochemical properties (O/C ratio, number of carbons, and ring oxygen (O*)), which may facilitate the use of Fourier-transform infrared (FTIR) spectroscopy to predict hygroscopicity in ambient samples.</p>","PeriodicalId":100014,"journal":{"name":"ACS ES&T Air","volume":"2 9","pages":"1849–1861"},"PeriodicalIF":0.0000,"publicationDate":"2025-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS ES&T Air","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsestair.5c00061","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The interaction of organic aerosols with water vapor plays a crucial role in cloud processes but is still challenging to fully elucidate due to its complexity. Recently, we developed a water uptake methodology for particles collected on Teflon filters, enabling the quantification of both chemical composition and hygroscopicity of the same sample. In this study, the hygroscopicity of organic compounds with varying functionalities collected on Teflon filters was quantified, including dicarboxylic acids (malonic, glutaric, succinic), multifunctional dicarboxylic acids (tartaric, citric), sugars (glucose, levoglucosan), and a polyol (meso-erythritol) at three relative humidities (RHs: ≈84%, 90%, and 97%). The hygroscopicity parameter (κ) was derived and compared to previous studies. A regression model was developed that predicts κ as a function of physicochemical properties (O/C ratio, number of carbons, and ring oxygen (O*)), which may facilitate the use of Fourier-transform infrared (FTIR) spectroscopy to predict hygroscopicity in ambient samples.

Abstract Image

有机化合物的吸湿性及其物理化学性质的函数
有机气溶胶与水蒸气的相互作用在云过程中起着至关重要的作用,但由于其复杂性,仍然具有挑战性。最近,我们开发了一种吸水方法,用于聚四氟乙烯过滤器上收集的颗粒,可以量化同一样品的化学成分和吸湿性。本研究对聚四氟乙烯过滤器上收集的具有不同功能的有机化合物的吸湿性进行了量化,包括二羧酸(丙二酸、戊二酸、丁二酸)、多功能二羧酸(酒石酸、柠檬酸)、糖(葡萄糖、左旋葡聚糖)和多元醇(中旋赤藓糖醇)在三种相对湿度(RHs:≈84%、90%和97%)下的吸湿性。导出吸湿参数(κ),并与前人的研究结果进行比较。建立了一个回归模型,预测κ作为物理化学性质(O/C比,碳数和环氧(O*))的函数,这可能有助于使用傅里叶变换红外(FTIR)光谱来预测环境样品的吸湿性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信