Lin Wang, Jingjing Guo, Jing Li, Shuwei Pei, Yu Zhang, Zhengke Li, Yalcun Turlana, Xiaohong Zhou and Ruozhen Yu*,
{"title":"Determination of the Permanganate Index in High-Chlorine Water Bodies","authors":"Lin Wang, Jingjing Guo, Jing Li, Shuwei Pei, Yu Zhang, Zhengke Li, Yalcun Turlana, Xiaohong Zhou and Ruozhen Yu*, ","doi":"10.1021/acsestwater.5c00498","DOIUrl":null,"url":null,"abstract":"<p >Despite the significant demand, accurate determination of the permanganate index in high-chloride bodies of water remains extremely limited. This study introduces an iodine-thiosulfate method that effectively eliminates the interference of chloride ions in the permanganate index determination. In this method, organic and inorganic substances in a water sample are oxidized with KMnO<sub>4</sub> in an alkaline medium to mitigate chloride ion interference. To further minimize this interference during back-titration, the remaining KMnO<sub>4</sub> is reduced using KI under adjusted acidic conditions. The released iodine is then titrated with standardized Na<sub>2</sub>S<sub>2</sub>O<sub>3</sub> until the starch–iodine complex’s blue–black color disappears. The iodine-thiosulfate method demonstrated a method detection limit of 0.4 mg L<sup>–1</sup> (<i>n</i> = 7) and a corresponding interlaboratory quantification limit of 1.6 mg L<sup>–1</sup> in water samples with chloride concentrations of 5000 mg L<sup>–1</sup>. The method’s precision and accuracy ranged from 1.4% to 6.7% and −1.0% to 5.0%, respectively. The relative error in permanganate index determination remained below 20% even at chloride concentrations up to 60 g L<sup>–1</sup>, whereas the conventional oxalate-permanganate method exceeded a 20% relative error once the chloride concentration reached 10 g L<sup>–1</sup> or higher. The sufficiently low detection limit along with excellent repeatability (intralaboratory precision), reproducibility (interlaboratory precision), and accuracy confirms its practical feasibility for routine analysis.</p>","PeriodicalId":93847,"journal":{"name":"ACS ES&T water","volume":"5 9","pages":"5395–5404"},"PeriodicalIF":4.3000,"publicationDate":"2025-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS ES&T water","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsestwater.5c00498","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Despite the significant demand, accurate determination of the permanganate index in high-chloride bodies of water remains extremely limited. This study introduces an iodine-thiosulfate method that effectively eliminates the interference of chloride ions in the permanganate index determination. In this method, organic and inorganic substances in a water sample are oxidized with KMnO4 in an alkaline medium to mitigate chloride ion interference. To further minimize this interference during back-titration, the remaining KMnO4 is reduced using KI under adjusted acidic conditions. The released iodine is then titrated with standardized Na2S2O3 until the starch–iodine complex’s blue–black color disappears. The iodine-thiosulfate method demonstrated a method detection limit of 0.4 mg L–1 (n = 7) and a corresponding interlaboratory quantification limit of 1.6 mg L–1 in water samples with chloride concentrations of 5000 mg L–1. The method’s precision and accuracy ranged from 1.4% to 6.7% and −1.0% to 5.0%, respectively. The relative error in permanganate index determination remained below 20% even at chloride concentrations up to 60 g L–1, whereas the conventional oxalate-permanganate method exceeded a 20% relative error once the chloride concentration reached 10 g L–1 or higher. The sufficiently low detection limit along with excellent repeatability (intralaboratory precision), reproducibility (interlaboratory precision), and accuracy confirms its practical feasibility for routine analysis.