Comparison of the Disinfection Kinetics of Wastewater-Sourced and Laboratory-Cultured E. coli and Enterococcus spp. (E. faecalis, E. faecium, E. casseliflavus) with Exposure to Free Chlorine, Monochloramine, UVC, and Simulated Sunlight
Mwanarusi H. Mwatondo, Mwale Chiyenge, Alma Y. Rocha and Andrea I. Silverman*,
{"title":"Comparison of the Disinfection Kinetics of Wastewater-Sourced and Laboratory-Cultured E. coli and Enterococcus spp. (E. faecalis, E. faecium, E. casseliflavus) with Exposure to Free Chlorine, Monochloramine, UVC, and Simulated Sunlight","authors":"Mwanarusi H. Mwatondo, Mwale Chiyenge, Alma Y. Rocha and Andrea I. Silverman*, ","doi":"10.1021/acsestwater.5c00285","DOIUrl":null,"url":null,"abstract":"<p >Most data on laboratory-scale experiments evaluating <i>E. coli</i> and enterococci disinfection are from experiments conducted using laboratory-cultured bacteria. However, environmental bacteria, such as those in wastewater, have potential to be more resistant to disinfection than their laboratory-cultured counterparts. Additionally, most <i>Enterococcus</i> disinfection studies have only evaluated <i>E. faecalis</i> despite the diversity of <i>Enterococcus</i> species in the environment. In this study, we evaluated inactivation kinetics of wastewater-sourced <i>E. coli</i> and enterococci, laboratory-cultured <i>E. coli</i>, and three species of laboratory-cultured <i>Enterococcus</i> with exposure to free chlorine, monochloramine, UVC, and simulated sunlight. All bacteria were purified and suspended in a chlorine-demand-free buffer with minimal light attenuation to allow comparison between populations without confounding matrix effects. Laboratory-cultured bacteria were more susceptible to the oxidants than the wastewater-sourced bacteria, highlighting that research using reference-strain bacteria in the laboratory may not reflect inactivation kinetics in the environment. When exposed to the light-based disinfectants, only laboratory-cultured <i>E. coli</i> and <i>E. faecalis</i> were more susceptible than the wastewater-sourced bacteria. Notably, different laboratory-cultured <i>Enterococcus</i> species had different inactivation rates, with <i>E. faecalis</i> being the most susceptible. These findings highlight the importance of incorporating indigenous environmental bacteria in laboratory studies and assessing a variety of <i>Enterococcus</i> species in disinfection research.</p><p >Environmental bacteria in wastewater can have slower disinfection kinetics than bacteria grown in the laboratory and should be included in laboratory-based experiments evaluating the mechanisms and kinetics of disinfection.</p>","PeriodicalId":93847,"journal":{"name":"ACS ES&T water","volume":"5 9","pages":"5695–5706"},"PeriodicalIF":4.3000,"publicationDate":"2025-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/pdf/10.1021/acsestwater.5c00285","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS ES&T water","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsestwater.5c00285","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Most data on laboratory-scale experiments evaluating E. coli and enterococci disinfection are from experiments conducted using laboratory-cultured bacteria. However, environmental bacteria, such as those in wastewater, have potential to be more resistant to disinfection than their laboratory-cultured counterparts. Additionally, most Enterococcus disinfection studies have only evaluated E. faecalis despite the diversity of Enterococcus species in the environment. In this study, we evaluated inactivation kinetics of wastewater-sourced E. coli and enterococci, laboratory-cultured E. coli, and three species of laboratory-cultured Enterococcus with exposure to free chlorine, monochloramine, UVC, and simulated sunlight. All bacteria were purified and suspended in a chlorine-demand-free buffer with minimal light attenuation to allow comparison between populations without confounding matrix effects. Laboratory-cultured bacteria were more susceptible to the oxidants than the wastewater-sourced bacteria, highlighting that research using reference-strain bacteria in the laboratory may not reflect inactivation kinetics in the environment. When exposed to the light-based disinfectants, only laboratory-cultured E. coli and E. faecalis were more susceptible than the wastewater-sourced bacteria. Notably, different laboratory-cultured Enterococcus species had different inactivation rates, with E. faecalis being the most susceptible. These findings highlight the importance of incorporating indigenous environmental bacteria in laboratory studies and assessing a variety of Enterococcus species in disinfection research.
Environmental bacteria in wastewater can have slower disinfection kinetics than bacteria grown in the laboratory and should be included in laboratory-based experiments evaluating the mechanisms and kinetics of disinfection.