Infinite quantum signal processing for arbitrary Szegő functions

IF 2.7 1区 数学 Q1 MATHEMATICS
Michel Alexis, Lin Lin, Gevorg Mnatsakanyan, Christoph Thiele, Jiasu Wang
{"title":"Infinite quantum signal processing for arbitrary Szegő functions","authors":"Michel Alexis, Lin Lin, Gevorg Mnatsakanyan, Christoph Thiele, Jiasu Wang","doi":"10.1002/cpa.70007","DOIUrl":null,"url":null,"abstract":"We provide a complete solution to the problem of infinite quantum signal processing (QSP) for the class of Szegő functions, which are functions that satisfy a logarithmic integrability condition and include almost any function that allows for a QSP representation. We do so by introducing a new algorithm called the Riemann–Hilbert–Weiss algorithm, which can compute any individual phase factor independent of all other phase factors. Our algorithm is also the first provably stable numerical algorithm for computing phase factors of any arbitrary Szegő function. The proof of stability involves solving a Riemann–Hilbert factorization problem in nonlinear Fourier analysis using elements of spectral theory.","PeriodicalId":10601,"journal":{"name":"Communications on Pure and Applied Mathematics","volume":"35 1","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications on Pure and Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1002/cpa.70007","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We provide a complete solution to the problem of infinite quantum signal processing (QSP) for the class of Szegő functions, which are functions that satisfy a logarithmic integrability condition and include almost any function that allows for a QSP representation. We do so by introducing a new algorithm called the Riemann–Hilbert–Weiss algorithm, which can compute any individual phase factor independent of all other phase factors. Our algorithm is also the first provably stable numerical algorithm for computing phase factors of any arbitrary Szegő function. The proof of stability involves solving a Riemann–Hilbert factorization problem in nonlinear Fourier analysis using elements of spectral theory.
任意塞格函数的无限量子信号处理
我们提供了一类塞格函数的无限量子信号处理(QSP)问题的完整解,塞格函数是满足对数可积性条件的函数,包括几乎所有允许QSP表示的函数。我们通过引入一种称为Riemann-Hilbert-Weiss算法的新算法来做到这一点,该算法可以独立于所有其他相位因子计算任何单个相位因子。该算法也是第一个计算任意塞格函数相因子的可证明稳定的数值算法。稳定性的证明涉及到用谱理论的元素解决非线性傅立叶分析中的黎曼-希尔伯特分解问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.70
自引率
3.30%
发文量
59
审稿时长
>12 weeks
期刊介绍: Communications on Pure and Applied Mathematics (ISSN 0010-3640) is published monthly, one volume per year, by John Wiley & Sons, Inc. © 2019. The journal primarily publishes papers originating at or solicited by the Courant Institute of Mathematical Sciences. It features recent developments in applied mathematics, mathematical physics, and mathematical analysis. The topics include partial differential equations, computer science, and applied mathematics. CPAM is devoted to mathematical contributions to the sciences; both theoretical and applied papers, of original or expository type, are included.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信