Marco Marinucci, Gabriel Jung, Michele Liguori, Andrea Ravenni, Francesco Spezzati, Adam Andrews, Marco Baldi, William R. Coulton, Dionysios Karagiannis, Francisco Villaescusa-Navarro and Benjamin D. Wandelt
{"title":"The constraining power of the marked power spectrum: an analytical study","authors":"Marco Marinucci, Gabriel Jung, Michele Liguori, Andrea Ravenni, Francesco Spezzati, Adam Andrews, Marco Baldi, William R. Coulton, Dionysios Karagiannis, Francisco Villaescusa-Navarro and Benjamin D. Wandelt","doi":"10.1088/1475-7516/2025/09/036","DOIUrl":null,"url":null,"abstract":"The marked power spectrum — a two-point correlation function of a weighted density field — has emerged as a promising tool for extracting cosmological information from the large-scale structure of the Universe. In this work, we present the first comprehensive analytical study of the marked power spectrum's sensitivity to primordial non-Gaussianity (PNG) of the non-local type. We extend previous effective field theory frameworks to incorporate PNG, developing a complete theoretical model that we validate against the Quijote simulation suite. Through a systematic Fisher analysis, we compare the constraining power of the marked power spectrum against traditional approaches combining the power spectrum and bispectrum (P+B). We explore different choices of mark parameters to evaluate their impact on parameter constraints, particularly focusing on equilateral and orthogonal PNG as well as neutrino masses. Our analysis shows that while marking up underdense regions yields optimal constraints in the low shot-noise regime, the marked power spectrum's performance for discrete tracers with BOSS-like number densities does not surpass that of P+B analysis at mildly non-linear scales (k ≲ 0.25 h/Mpc). However, the marked approach offers several practical advantages, including simpler estimation procedures and potentially more manageable systematic effects. Our theoretical framework reveals how the marked power spectrum incorporates higher-order correlation information through terms resembling tree-level bispectra and power spectrum convolutions. This work establishes a robust foundation for applying marked statistics to future large-volume surveys.","PeriodicalId":15445,"journal":{"name":"Journal of Cosmology and Astroparticle Physics","volume":"46 1","pages":""},"PeriodicalIF":5.9000,"publicationDate":"2025-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cosmology and Astroparticle Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1475-7516/2025/09/036","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
The marked power spectrum — a two-point correlation function of a weighted density field — has emerged as a promising tool for extracting cosmological information from the large-scale structure of the Universe. In this work, we present the first comprehensive analytical study of the marked power spectrum's sensitivity to primordial non-Gaussianity (PNG) of the non-local type. We extend previous effective field theory frameworks to incorporate PNG, developing a complete theoretical model that we validate against the Quijote simulation suite. Through a systematic Fisher analysis, we compare the constraining power of the marked power spectrum against traditional approaches combining the power spectrum and bispectrum (P+B). We explore different choices of mark parameters to evaluate their impact on parameter constraints, particularly focusing on equilateral and orthogonal PNG as well as neutrino masses. Our analysis shows that while marking up underdense regions yields optimal constraints in the low shot-noise regime, the marked power spectrum's performance for discrete tracers with BOSS-like number densities does not surpass that of P+B analysis at mildly non-linear scales (k ≲ 0.25 h/Mpc). However, the marked approach offers several practical advantages, including simpler estimation procedures and potentially more manageable systematic effects. Our theoretical framework reveals how the marked power spectrum incorporates higher-order correlation information through terms resembling tree-level bispectra and power spectrum convolutions. This work establishes a robust foundation for applying marked statistics to future large-volume surveys.
期刊介绍:
Journal of Cosmology and Astroparticle Physics (JCAP) encompasses theoretical, observational and experimental areas as well as computation and simulation. The journal covers the latest developments in the theory of all fundamental interactions and their cosmological implications (e.g. M-theory and cosmology, brane cosmology). JCAP''s coverage also includes topics such as formation, dynamics and clustering of galaxies, pre-galactic star formation, x-ray astronomy, radio astronomy, gravitational lensing, active galactic nuclei, intergalactic and interstellar matter.