A. Zeolla, J. Alvarez-Muñiz, S. Cabana-Freire, W. Carvalho, A. Cummings, C. Deaconu, J. Hinkel, K. Hughes, R. Krebs, Y. Liu, Z. Martin, K. Mulrey, A. Nozdrina, E. Oberla, S. Prohira, A. Romero-Wolf, A.G. Vieregg, S.A. Wissel, E. Zas and The BEACON collaboration
{"title":"Sensitivity of BEACON to ultra-high energy diffuse and transient neutrinos","authors":"A. Zeolla, J. Alvarez-Muñiz, S. Cabana-Freire, W. Carvalho, A. Cummings, C. Deaconu, J. Hinkel, K. Hughes, R. Krebs, Y. Liu, Z. Martin, K. Mulrey, A. Nozdrina, E. Oberla, S. Prohira, A. Romero-Wolf, A.G. Vieregg, S.A. Wissel, E. Zas and The BEACON collaboration","doi":"10.1088/1475-7516/2025/09/033","DOIUrl":null,"url":null,"abstract":"Ultra-high energy neutrinos (E > 1017 eV) can provide insight into the most powerful accelerators in the universe, however their flux is extremely low. The Beamforming Elevated Array for COsmic Neutrinos (BEACON) is a detector concept which efficiently achieves sensitivity to this flux by employing phased radio arrays on mountains, which search for the radio emission of up-going extensive air showers created by Earth-skimming tau neutrinos. Here, we calculate the point-source effective area of BEACON and characterize its sensitivity to transient neutrino fluences with both short (< 15 min) and long (> 1 day) durations. Additionally, by integrating the effective area, we provide an updated estimate of the diffuse flux sensitivity. With just 100 stations, BEACON achieves sensitivity to short-duration transients such as nearby short gamma-ray bursts. With 1000 stations, BEACON achieves a sensitivity to long-duration transients, as well as the cosmogenic flux, ten times greater than existing experiments at 1 EeV. With an efficient design optimized for ultrahigh energy neutrinos, BEACON is capable of discovering the sources of neutrinos at the highest energies.","PeriodicalId":15445,"journal":{"name":"Journal of Cosmology and Astroparticle Physics","volume":"20 1","pages":""},"PeriodicalIF":5.9000,"publicationDate":"2025-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cosmology and Astroparticle Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1475-7516/2025/09/033","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Ultra-high energy neutrinos (E > 1017 eV) can provide insight into the most powerful accelerators in the universe, however their flux is extremely low. The Beamforming Elevated Array for COsmic Neutrinos (BEACON) is a detector concept which efficiently achieves sensitivity to this flux by employing phased radio arrays on mountains, which search for the radio emission of up-going extensive air showers created by Earth-skimming tau neutrinos. Here, we calculate the point-source effective area of BEACON and characterize its sensitivity to transient neutrino fluences with both short (< 15 min) and long (> 1 day) durations. Additionally, by integrating the effective area, we provide an updated estimate of the diffuse flux sensitivity. With just 100 stations, BEACON achieves sensitivity to short-duration transients such as nearby short gamma-ray bursts. With 1000 stations, BEACON achieves a sensitivity to long-duration transients, as well as the cosmogenic flux, ten times greater than existing experiments at 1 EeV. With an efficient design optimized for ultrahigh energy neutrinos, BEACON is capable of discovering the sources of neutrinos at the highest energies.
期刊介绍:
Journal of Cosmology and Astroparticle Physics (JCAP) encompasses theoretical, observational and experimental areas as well as computation and simulation. The journal covers the latest developments in the theory of all fundamental interactions and their cosmological implications (e.g. M-theory and cosmology, brane cosmology). JCAP''s coverage also includes topics such as formation, dynamics and clustering of galaxies, pre-galactic star formation, x-ray astronomy, radio astronomy, gravitational lensing, active galactic nuclei, intergalactic and interstellar matter.