Can speech foundation models effectively identify languages in low-resource multilingual aging populations?

IF 1.4 Q3 ACOUSTICS
Aditya Kommineni, Rajat Hebbar, Sarah Petrosyan, Pranali Khobragade, Sudarsana Kadiri, Miguel Arce Rentería, Jinkook Lee, Shrikanth Narayanan
{"title":"Can speech foundation models effectively identify languages in low-resource multilingual aging populations?","authors":"Aditya Kommineni, Rajat Hebbar, Sarah Petrosyan, Pranali Khobragade, Sudarsana Kadiri, Miguel Arce Rentería, Jinkook Lee, Shrikanth Narayanan","doi":"10.1121/10.0039265","DOIUrl":null,"url":null,"abstract":"<p><p>Speech foundation models (SFMs) achieve state-of-the-art results in many tasks, but their performance on elderly, multilingual speech remains underexplored. In this work, we investigate SFMs' ability to analyze multilingual speech from older adults using spoken language identification as a proxy task. We propose three key qualities for foundation models to serve multilingual aging populations: robustness to input duration, invariance to speaker demographics, and few-shot transferability in low-resource settings. Zero-shot evaluation indicates a noticeable performance drop for shorter inputs. We find that native speakers' speech consistently outperforms non-native speech across languages. Few-shot learning indicates better transferability in larger models.</p>","PeriodicalId":73538,"journal":{"name":"JASA express letters","volume":"5 9","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12434620/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JASA express letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1121/10.0039265","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Speech foundation models (SFMs) achieve state-of-the-art results in many tasks, but their performance on elderly, multilingual speech remains underexplored. In this work, we investigate SFMs' ability to analyze multilingual speech from older adults using spoken language identification as a proxy task. We propose three key qualities for foundation models to serve multilingual aging populations: robustness to input duration, invariance to speaker demographics, and few-shot transferability in low-resource settings. Zero-shot evaluation indicates a noticeable performance drop for shorter inputs. We find that native speakers' speech consistently outperforms non-native speech across languages. Few-shot learning indicates better transferability in larger models.

Abstract Image

Abstract Image

Abstract Image

语音基础模型能否在资源匮乏的多语种老龄化人群中有效识别语言?
语音基础模型(SFMs)在许多任务中取得了最先进的结果,但它们在老年人多语言语音中的表现仍未得到充分探索。在这项工作中,我们研究了SFMs使用口语识别作为代理任务来分析老年人多语种语音的能力。我们提出了为多语言老龄化人口服务的基础模型的三个关键品质:对输入时间的鲁棒性,对说话人人口统计的不变性,以及在低资源环境下的少量可转移性。对于较短的输入,零射击评估表明明显的性能下降。我们发现,在不同的语言中,以母语为母语的人说话的表现总是优于非母语的人。在更大的模型中,Few-shot学习表明了更好的可移植性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信