Dapagliflozin Reverses LPS-Induced Depressive–Like Behavior in Mice via Modulation of Glutamate and NF-κB

IF 2.3 4区 心理学 Q2 BEHAVIORAL SCIENCES
Haneen Amawi, Sahar Alsheyab, Alaa M. Hammad, Rawan Alhazaimeh, Tayma Maklouf, Bahaa Al-Trad, Daniyah A. Almarghalani, Mohammad S. Alzahrani, Charles R. Ashby Jr., Amit K. Tiwari
{"title":"Dapagliflozin Reverses LPS-Induced Depressive–Like Behavior in Mice via Modulation of Glutamate and NF-κB","authors":"Haneen Amawi,&nbsp;Sahar Alsheyab,&nbsp;Alaa M. Hammad,&nbsp;Rawan Alhazaimeh,&nbsp;Tayma Maklouf,&nbsp;Bahaa Al-Trad,&nbsp;Daniyah A. Almarghalani,&nbsp;Mohammad S. Alzahrani,&nbsp;Charles R. Ashby Jr.,&nbsp;Amit K. Tiwari","doi":"10.1111/gbb.70037","DOIUrl":null,"url":null,"abstract":"<p>Major depressive disorder is a prevalent and debilitating psychiatric illness that produces significant disability. Clinical data suggest that the pathophysiology of depression is due, in part, to a dysregulation of inflammation and glutamate levels in the brain. The systemic administration of lipopolysaccharide (LPS) has been shown to induce depressive-like behaviors in mice. Dapagliflozin (DPG), a sodium-glucose cotransporter-2 inhibitor (SGLT2i), used to treat type 2 diabetes, has been reported to produce neuroprotective effects in various animal models. This study aimed to determine the efficacy of DPG (0.5 mg/kg) to decrease LPS-induced depressive-like behaviors in mice. Thirty-six male mice were divided into four groups (<i>n</i> = 9): Saline (normal saline, 1 mL/kg, i.p., for 14 days), LPS (saline for 7 days followed by 1 mg/kg of LPS, i.p.), DPG (0.5 mg/kg, oral gavage for 14 days), and LPS and DPG (DPG alone for 7 days, followed by LPS and DPG for another 7 days). The forced swim (FST) and tail suspension tests (TST), putative animal models of depression, were conducted at the end of the study. After euthanization, brain tissues and blood samples were collected. The expression of glutamate transporter 1 (GLT-1), solute carrier family 7-member 11 (SLC7A11), and nuclear factor kappa β (NF-κB) mRNA was determined using q-PCR. LPS induced depressive-like behavior and significantly increased mRNA levels of GLT-1, SLC7A11, and NF-κB. DPG alone also affected baseline performance in the TST. Furthermore, DPG significantly decreased the LPS-induced changes, suggesting that it may alleviate LPS-induced depressive behaviors by modulating glutamate homeostasis and inflammatory pathways.</p>","PeriodicalId":50426,"journal":{"name":"Genes Brain and Behavior","volume":"24 5","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/gbb.70037","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genes Brain and Behavior","FirstCategoryId":"102","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/gbb.70037","RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BEHAVIORAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Major depressive disorder is a prevalent and debilitating psychiatric illness that produces significant disability. Clinical data suggest that the pathophysiology of depression is due, in part, to a dysregulation of inflammation and glutamate levels in the brain. The systemic administration of lipopolysaccharide (LPS) has been shown to induce depressive-like behaviors in mice. Dapagliflozin (DPG), a sodium-glucose cotransporter-2 inhibitor (SGLT2i), used to treat type 2 diabetes, has been reported to produce neuroprotective effects in various animal models. This study aimed to determine the efficacy of DPG (0.5 mg/kg) to decrease LPS-induced depressive-like behaviors in mice. Thirty-six male mice were divided into four groups (n = 9): Saline (normal saline, 1 mL/kg, i.p., for 14 days), LPS (saline for 7 days followed by 1 mg/kg of LPS, i.p.), DPG (0.5 mg/kg, oral gavage for 14 days), and LPS and DPG (DPG alone for 7 days, followed by LPS and DPG for another 7 days). The forced swim (FST) and tail suspension tests (TST), putative animal models of depression, were conducted at the end of the study. After euthanization, brain tissues and blood samples were collected. The expression of glutamate transporter 1 (GLT-1), solute carrier family 7-member 11 (SLC7A11), and nuclear factor kappa β (NF-κB) mRNA was determined using q-PCR. LPS induced depressive-like behavior and significantly increased mRNA levels of GLT-1, SLC7A11, and NF-κB. DPG alone also affected baseline performance in the TST. Furthermore, DPG significantly decreased the LPS-induced changes, suggesting that it may alleviate LPS-induced depressive behaviors by modulating glutamate homeostasis and inflammatory pathways.

Abstract Image

达格列净通过调节谷氨酸和NF-κB逆转lps诱导的小鼠抑郁样行为。
重度抑郁症是一种普遍的、使人衰弱的精神疾病,会导致严重的残疾。临床数据表明,抑郁症的病理生理学部分是由于大脑中炎症和谷氨酸水平的失调。脂多糖(LPS)的全身管理已被证明可以诱导小鼠的抑郁样行为。达格列净(DPG)是一种用于治疗2型糖尿病的钠-葡萄糖共转运蛋白-2抑制剂(SGLT2i),据报道在各种动物模型中产生神经保护作用。本研究旨在探讨DPG (0.5 mg/kg)对lps诱导的小鼠抑郁样行为的影响。将36只雄性小鼠分为4组(n = 9):生理盐水组(生理盐水1 mL/kg,灌胃,连用14 d)、LPS组(生理盐水7 d后加LPS 1 mg/kg,连用)、DPG组(0.5 mg/kg,灌胃14 d)、LPS + DPG组(DPG单独灌胃7 d,再加LPS + DPG灌胃7 d)。在研究结束时进行推定为抑郁症动物模型的强迫游泳(FST)和悬尾试验(TST)。安乐死后,采集脑组织和血液样本。采用q-PCR检测谷氨酸转运蛋白1 (GLT-1)、溶质载体家族7-成员11 (SLC7A11)和核因子κ β (NF-κB) mRNA的表达。LPS诱导抑郁样行为,显著升高GLT-1、SLC7A11、NF-κB mRNA水平。单独DPG也会影响TST的基线表现。此外,DPG显著降低lps诱导的抑郁行为,提示其可能通过调节谷氨酸稳态和炎症通路来缓解lps诱导的抑郁行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Genes Brain and Behavior
Genes Brain and Behavior 医学-行为科学
CiteScore
6.80
自引率
4.00%
发文量
62
审稿时长
4-8 weeks
期刊介绍: Genes, Brain and Behavior was launched in 2002 with the aim of publishing top quality research in behavioral and neural genetics in their broadest sense. The emphasis is on the analysis of the behavioral and neural phenotypes under consideration, the unifying theme being the genetic approach as a tool to increase our understanding of these phenotypes. Genes Brain and Behavior is pleased to offer the following features: 8 issues per year online submissions with first editorial decisions within 3-4 weeks and fast publication at Wiley-Blackwells High visibility through its coverage by PubMed/Medline, Current Contents and other major abstracting and indexing services Inclusion in the Wiley-Blackwell consortial license, extending readership to thousands of international libraries and institutions A large and varied editorial board comprising of international specialists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信