Han Wang, Yuxuan Luo, Sandeep Artham, Qianqian Wang, Yi Peng, Zixi Yun, Xinyue Li, Chen Wu, Zhenghao Liu, Kristen L Weber-Bonk, Chun-Peng Pai, Yuan Cao, Jiangan Yue, Sunghee Park, Ruth A Keri, Lisheng Geng, Donald P McDonnell, Hung-Ying Kao, Sichun Yang
{"title":"Targeting the ERα DBD-LBD interface with mitoxantrone disrupts receptor function through proteasomal degradation.","authors":"Han Wang, Yuxuan Luo, Sandeep Artham, Qianqian Wang, Yi Peng, Zixi Yun, Xinyue Li, Chen Wu, Zhenghao Liu, Kristen L Weber-Bonk, Chun-Peng Pai, Yuan Cao, Jiangan Yue, Sunghee Park, Ruth A Keri, Lisheng Geng, Donald P McDonnell, Hung-Ying Kao, Sichun Yang","doi":"10.1158/1535-7163.MCT-25-0405","DOIUrl":null,"url":null,"abstract":"<p><p>The estrogen receptor (ER or ERα) remains the primary therapeutic target for luminal breast cancer, with current treatments centered on competitive antagonists, receptor down-regulators, and aromatase inhibitors. Despite these options, resistance frequently emerges, highlighting the need for alternative targeting strategies. We discovered a novel mechanism of ER inhibition that targets the previously unexplored interface between the DNA-binding domain (DBD) and ligand-binding domain (LBD) of the receptor. Through computational screening and functional assays, we identified mitoxantrone (MTO), an FDA-approved topoisomerase II inhibitor, as a specific ligand for this DBD-LBD interface. Comprehensive biophysical, biochemical, and cellular analyses demonstrate that MTO binding induces distinct conformational changes in ER, triggering rapid cytoplasmic redistribution and proteasomal degradation through mechanisms independent of its DNA damage activity. Critically, MTO effectively inhibits constitutively active ER mutants (Y537S and D538G) associated with endocrine therapy resistance, suppressing both wild-type and mutant ER-dependent gene expression and tumor growth more potently than fulvestrant in cellular and xenograft models. These findings establish the DBD-LBD interface as a druggable allosteric site that can overcome conventional resistance mechanisms, providing a new therapeutic paradigm for targeting nuclear receptor function through disruption of interdomain communication rather than hormone binding competition.</p>","PeriodicalId":18791,"journal":{"name":"Molecular Cancer Therapeutics","volume":" ","pages":""},"PeriodicalIF":5.5000,"publicationDate":"2025-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12496009/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Cancer Therapeutics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1158/1535-7163.MCT-25-0405","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The estrogen receptor (ER or ERα) remains the primary therapeutic target for luminal breast cancer, with current treatments centered on competitive antagonists, receptor down-regulators, and aromatase inhibitors. Despite these options, resistance frequently emerges, highlighting the need for alternative targeting strategies. We discovered a novel mechanism of ER inhibition that targets the previously unexplored interface between the DNA-binding domain (DBD) and ligand-binding domain (LBD) of the receptor. Through computational screening and functional assays, we identified mitoxantrone (MTO), an FDA-approved topoisomerase II inhibitor, as a specific ligand for this DBD-LBD interface. Comprehensive biophysical, biochemical, and cellular analyses demonstrate that MTO binding induces distinct conformational changes in ER, triggering rapid cytoplasmic redistribution and proteasomal degradation through mechanisms independent of its DNA damage activity. Critically, MTO effectively inhibits constitutively active ER mutants (Y537S and D538G) associated with endocrine therapy resistance, suppressing both wild-type and mutant ER-dependent gene expression and tumor growth more potently than fulvestrant in cellular and xenograft models. These findings establish the DBD-LBD interface as a druggable allosteric site that can overcome conventional resistance mechanisms, providing a new therapeutic paradigm for targeting nuclear receptor function through disruption of interdomain communication rather than hormone binding competition.
期刊介绍:
Molecular Cancer Therapeutics will focus on basic research that has implications for cancer therapeutics in the following areas: Experimental Cancer Therapeutics, Identification of Molecular Targets, Targets for Chemoprevention, New Models, Cancer Chemistry and Drug Discovery, Molecular and Cellular Pharmacology, Molecular Classification of Tumors, and Bioinformatics and Computational Molecular Biology. The journal provides a publication forum for these emerging disciplines that is focused specifically on cancer research. Papers are stringently reviewed and only those that report results of novel, timely, and significant research and meet high standards of scientific merit will be accepted for publication.