Plasmon-Induced Ultrafast Interfacial Charge Transfer for Enhanced Photocatalytic Hydrogen Evolution

IF 15.6 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Xinyu Yin, , , Duoduo Gao, , , Jianjun Zhang*, , , Hermenegildo García, , , Jiaguo Yu*, , and , Huogen Yu*, 
{"title":"Plasmon-Induced Ultrafast Interfacial Charge Transfer for Enhanced Photocatalytic Hydrogen Evolution","authors":"Xinyu Yin,&nbsp;, ,&nbsp;Duoduo Gao,&nbsp;, ,&nbsp;Jianjun Zhang*,&nbsp;, ,&nbsp;Hermenegildo García,&nbsp;, ,&nbsp;Jiaguo Yu*,&nbsp;, and ,&nbsp;Huogen Yu*,&nbsp;","doi":"10.1021/jacs.5c11154","DOIUrl":null,"url":null,"abstract":"<p >The localized surface plasmon resonance (LSPR) effect of precious metals plays a pivotal role in photocatalytic H<sub>2</sub> evolution, where plasmon-generated hot electrons are efficiently injected into the photocatalytic system, profoundly modulating interfacial electron transfer dynamics. Regrettably, the specific impact of the LSPR effect of precious metals on the ultrafast interfacial charge transfer and its kinetic characteristics remains inadequately explored in photocatalystic systems. To address these knowledge gaps, Au nanoparticles are incorporated into the CdS/ReS<sub><i>x</i></sub> photocatalyst to comprehensively investigate the LSPR-induced ultrafast interfacial charge transfer, ultimately boosting photocatalytic H<sub>2</sub> production activity. The experimental results reveal that the developed CdS/Au<sub>0.5</sub>@ReS<sub><i>x</i></sub> photocatalyst achieves a notable H<sub>2</sub>-production activity with a rate of 8.6 mmol g<sup>–1</sup> h<sup>–1</sup> (AQE = 35.9%), which is evidently higher than that of CdS/Au (1.8 mmol g<sup>–1</sup> h<sup>–1</sup>) and CdS/ReS<sub><i>x</i></sub> (4.0 mmol g<sup>–1</sup> h<sup>–1</sup>). In situ XAFS and fs-TAS characterizations confirm that the Au LSPR effect generates electron-deficient Au<sup>δ+</sup> species and contracts Au–S bond lengths, dramatically accelerating electron transfer in the Au@ReS<sub><i>x</i></sub> cocatalyst. This plasmon-induced ultrafast charge transfer mechanism enables efficient photogenerated electron migration in the CdS/Au@ReS<sub><i>x</i></sub> system, promoting interfacial charge dynamics for exceptional photocatalytic H<sub>2</sub> evolution performance. The findings offer a new understanding of charge transfer mechanisms enabled by LSPR effects and create a blueprint for engineering next-generation plasmonic photocatalysts.</p>","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":"147 38","pages":"34881–34890"},"PeriodicalIF":15.6000,"publicationDate":"2025-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/jacs.5c11154","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The localized surface plasmon resonance (LSPR) effect of precious metals plays a pivotal role in photocatalytic H2 evolution, where plasmon-generated hot electrons are efficiently injected into the photocatalytic system, profoundly modulating interfacial electron transfer dynamics. Regrettably, the specific impact of the LSPR effect of precious metals on the ultrafast interfacial charge transfer and its kinetic characteristics remains inadequately explored in photocatalystic systems. To address these knowledge gaps, Au nanoparticles are incorporated into the CdS/ReSx photocatalyst to comprehensively investigate the LSPR-induced ultrafast interfacial charge transfer, ultimately boosting photocatalytic H2 production activity. The experimental results reveal that the developed CdS/Au0.5@ReSx photocatalyst achieves a notable H2-production activity with a rate of 8.6 mmol g–1 h–1 (AQE = 35.9%), which is evidently higher than that of CdS/Au (1.8 mmol g–1 h–1) and CdS/ReSx (4.0 mmol g–1 h–1). In situ XAFS and fs-TAS characterizations confirm that the Au LSPR effect generates electron-deficient Auδ+ species and contracts Au–S bond lengths, dramatically accelerating electron transfer in the Au@ReSx cocatalyst. This plasmon-induced ultrafast charge transfer mechanism enables efficient photogenerated electron migration in the CdS/Au@ReSx system, promoting interfacial charge dynamics for exceptional photocatalytic H2 evolution performance. The findings offer a new understanding of charge transfer mechanisms enabled by LSPR effects and create a blueprint for engineering next-generation plasmonic photocatalysts.

Abstract Image

Abstract Image

等离子体诱导的超快界面电荷转移增强光催化析氢
贵金属的局域表面等离子体共振(LSPR)效应在光催化H2演化中起着关键作用,等离子体产生的热电子被有效地注入光催化体系,深刻地调节了界面电子转移动力学。遗憾的是,在光催化体系中,贵金属的LSPR效应对超快界面电荷转移及其动力学特性的具体影响尚未得到充分的探讨。为了解决这些知识空白,研究人员将金纳米颗粒掺入CdS/ReSx光催化剂中,以全面研究lspr诱导的超快界面电荷转移,最终提高光催化制氢活性。实验结果表明,所制备的CdS/Au0.5@ReSx光催化剂的产氢率为8.6 mmol g-1 h-1 (AQE = 35.9%),明显高于CdS/Au (1.8 mmol g-1 h-1)和CdS/ReSx (4.0 mmol g-1 h-1)。原位XAFS和fs-TAS表征证实,Au LSPR效应产生了缺电子的Auδ+物质,并缩短了Au - s键的长度,极大地加速了Au@ReSx助催化剂中的电子转移。这种等离子体诱导的超快电荷转移机制能够在CdS/Au@ReSx体系中实现高效的光生电子迁移,促进界面电荷动力学,从而实现卓越的光催化析氢性能。这一发现为LSPR效应带来的电荷转移机制提供了新的理解,并为下一代等离子体光催化剂的设计创造了蓝图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
24.40
自引率
6.00%
发文量
2398
审稿时长
1.6 months
期刊介绍: The flagship journal of the American Chemical Society, known as the Journal of the American Chemical Society (JACS), has been a prestigious publication since its establishment in 1879. It holds a preeminent position in the field of chemistry and related interdisciplinary sciences. JACS is committed to disseminating cutting-edge research papers, covering a wide range of topics, and encompasses approximately 19,000 pages of Articles, Communications, and Perspectives annually. With a weekly publication frequency, JACS plays a vital role in advancing the field of chemistry by providing essential research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信