SurFF: a foundation model for surface exposure and morphology across intermetallic crystals

IF 18.3 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Jun Yin  (, ), Honghao Chen  (, ), Jiangjie Qiu  (, ), Wentao Li  (, ), Peng He  (, ), Jiali Li  (, ), Iftekhar A. Karimi, Xiaocheng Lan  (, ), Tiefeng Wang  (, ), Xiaonan Wang  (, )
{"title":"SurFF: a foundation model for surface exposure and morphology across intermetallic crystals","authors":"Jun Yin \n (, ), Honghao Chen \n (, ), Jiangjie Qiu \n (, ), Wentao Li \n (, ), Peng He \n (, ), Jiali Li \n (, ), Iftekhar A. Karimi, Xiaocheng Lan \n (, ), Tiefeng Wang \n (, ), Xiaonan Wang \n (, )","doi":"10.1038/s43588-025-00839-0","DOIUrl":null,"url":null,"abstract":"With approximately 90% of industrial reactions occurring on surfaces, the role of heterogeneous catalysts is paramount. Currently, accurate surface exposure prediction is vital for heterogeneous catalyst design, but it is hindered by the high costs of experimental and computational methods. Here we introduce a foundation force-field-based model for predicting surface exposure and synthesizability (SurFF) across intermetallic crystals, which are essential materials for heterogeneous catalysts. We created a comprehensive intermetallic surface database using an active learning method and high-throughput density functional theory calculations, encompassing 12,553 unique surfaces and 344,200 single points. SurFF achieves density-functional-theory-level precision with a prediction error of 3 meV Å−2 and enables large-scale surface exposure prediction with a 105-fold acceleration. Validation against computational and experimental data both show strong alignment. We applied SurFF for large-scale predictions of surface energy and Wulff shapes for over 6,000 intermetallic crystals, providing valuable data for the community. A foundation machine learning model, SurFF, enables DFT-accurate predictions of surface energies and morphologies in intermetallic catalysts, achieving over 105-fold acceleration for high-throughput materials screening.","PeriodicalId":74246,"journal":{"name":"Nature computational science","volume":"5 9","pages":"782-792"},"PeriodicalIF":18.3000,"publicationDate":"2025-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature computational science","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s43588-025-00839-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

With approximately 90% of industrial reactions occurring on surfaces, the role of heterogeneous catalysts is paramount. Currently, accurate surface exposure prediction is vital for heterogeneous catalyst design, but it is hindered by the high costs of experimental and computational methods. Here we introduce a foundation force-field-based model for predicting surface exposure and synthesizability (SurFF) across intermetallic crystals, which are essential materials for heterogeneous catalysts. We created a comprehensive intermetallic surface database using an active learning method and high-throughput density functional theory calculations, encompassing 12,553 unique surfaces and 344,200 single points. SurFF achieves density-functional-theory-level precision with a prediction error of 3 meV Å−2 and enables large-scale surface exposure prediction with a 105-fold acceleration. Validation against computational and experimental data both show strong alignment. We applied SurFF for large-scale predictions of surface energy and Wulff shapes for over 6,000 intermetallic crystals, providing valuable data for the community. A foundation machine learning model, SurFF, enables DFT-accurate predictions of surface energies and morphologies in intermetallic catalysts, achieving over 105-fold acceleration for high-throughput materials screening.

Abstract Image

SurFF:金属间晶体表面暴露和形态的基础模型。
大约90%的工业反应发生在表面上,多相催化剂的作用是至关重要的。目前,准确的表面暴露预测对多相催化剂的设计至关重要,但实验和计算方法的高成本阻碍了这一点。本文介绍了一种基于基础力场的模型,用于预测金属间晶体的表面暴露和合成能力(SurFF),金属间晶体是制备非均相催化剂的必要材料。我们使用主动学习方法和高通量密度泛函理论计算创建了一个综合的金属间表面数据库,包含12,553个独特的表面和344,200个单点。SurFF达到了密度泛函数理论级的精度,预测误差为3 meV Å-2,并能够以105倍的加速度进行大规模的表面暴露预测。对计算和实验数据的验证都显示出很强的一致性。我们将SurFF应用于6000多个金属间晶体的表面能和Wulff形状的大规模预测,为社区提供了有价值的数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
11.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信