{"title":"Prop scan versus roll scan: selection for cranial three-dimensional rotational angiography using in-house phantom and Figure of Merit as parameter.","authors":"Ika Hariyati, Ani Sulistyani, Matthew Gregorius, Harimulti Aribowo, Ungguh Prawoto, Defri Dwi Yana, Thariqah Salamah, Lukmanda Evan Lubis, Djarwani Soeharso Soejoko","doi":"10.1007/s13246-025-01632-z","DOIUrl":null,"url":null,"abstract":"<p><p>This study introduces a novel optimization framework for cranial three-dimensional rotational angiography (3DRA), combining the development of a brain equivalent in-house phantom with Figure of Merit (FOM) a quantitative evaluation method. The technical contribution involves the development of an in-house phantom constructed using iodine-infused epoxy and lycal resins, validated against clinical Hounsfield Units (HU). A customized head phantom was developed to simulate brain tissue and cranial vasculature for 3DRA optimization. The phantom was constructed using epoxy resin with 0.15-0.2% iodine to replicate brain tissue and lycal resin with iodine concentrations ranging from 0.65 to 0.7% to simulate blood vessels of varying diameters. The phantom materials validation was performed by comparing their HU values to clinical reference HU values from brain tissue and cranial vessels, ensuring accurate tissue simulation. The validated phantom was used to acquire images using cranial 3DRA protocols, specifically Prop-Scan and Roll-Scan. Image quality was assessed using Signal-Difference-to-Noise Ratio (SDNR), Dose-Area Product (DAP), and Modulation Transfer Function (MTF). Imaging efficiency was quantified using the Figure of Merit (FOM), calculated as SDNR<sup>2</sup>/DAP, to objectively compare the performance of two cranial 3DRA protocols. The task-based optimization showed that Roll-Scan consistently outperformed Prop-Scan across all vessel sizes and regions. Roll-Scan yields FOM values ranging from 183 to 337, while Prop-Scan FOM values ranged from 96 to 189. Additionally, Roll-Scan (0.27 lp/pixel) delivered better spatial resolution, as indicated by higher MTF 10% value than Prop-Scan (0.23 lp/pixel). Most notably, Roll-Scan consistently detecting 2 mm vessel structures among all regions of the phantom. This capability is clinically important in cerebral angiography, which is accurate visualization of small vessels, i.e. the Anterior Cerebral Artery (ACA), Posterior Cerebral Artery (PCA), and Middle Cerebral Artery (MCA). These findings highlight Roll-Scan as the superior protocol for brain interventional imaging, underscoring the significance of FOM as a comprehensive parameter for optimizing imaging protocols in clinical practice. The experimental results support the use of the Roll-Scan protocol as the preferred acquisition method for cerebral angiography in clinical practice. The analysis using FOM provides substantial and quantifiable evidence in determining the acquisition methods. Furthermore, the customized in-house phantom is recommended as a candidate to optimization tools for clinical medical physicists.</p>","PeriodicalId":48490,"journal":{"name":"Physical and Engineering Sciences in Medicine","volume":" ","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2025-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical and Engineering Sciences in Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s13246-025-01632-z","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
This study introduces a novel optimization framework for cranial three-dimensional rotational angiography (3DRA), combining the development of a brain equivalent in-house phantom with Figure of Merit (FOM) a quantitative evaluation method. The technical contribution involves the development of an in-house phantom constructed using iodine-infused epoxy and lycal resins, validated against clinical Hounsfield Units (HU). A customized head phantom was developed to simulate brain tissue and cranial vasculature for 3DRA optimization. The phantom was constructed using epoxy resin with 0.15-0.2% iodine to replicate brain tissue and lycal resin with iodine concentrations ranging from 0.65 to 0.7% to simulate blood vessels of varying diameters. The phantom materials validation was performed by comparing their HU values to clinical reference HU values from brain tissue and cranial vessels, ensuring accurate tissue simulation. The validated phantom was used to acquire images using cranial 3DRA protocols, specifically Prop-Scan and Roll-Scan. Image quality was assessed using Signal-Difference-to-Noise Ratio (SDNR), Dose-Area Product (DAP), and Modulation Transfer Function (MTF). Imaging efficiency was quantified using the Figure of Merit (FOM), calculated as SDNR2/DAP, to objectively compare the performance of two cranial 3DRA protocols. The task-based optimization showed that Roll-Scan consistently outperformed Prop-Scan across all vessel sizes and regions. Roll-Scan yields FOM values ranging from 183 to 337, while Prop-Scan FOM values ranged from 96 to 189. Additionally, Roll-Scan (0.27 lp/pixel) delivered better spatial resolution, as indicated by higher MTF 10% value than Prop-Scan (0.23 lp/pixel). Most notably, Roll-Scan consistently detecting 2 mm vessel structures among all regions of the phantom. This capability is clinically important in cerebral angiography, which is accurate visualization of small vessels, i.e. the Anterior Cerebral Artery (ACA), Posterior Cerebral Artery (PCA), and Middle Cerebral Artery (MCA). These findings highlight Roll-Scan as the superior protocol for brain interventional imaging, underscoring the significance of FOM as a comprehensive parameter for optimizing imaging protocols in clinical practice. The experimental results support the use of the Roll-Scan protocol as the preferred acquisition method for cerebral angiography in clinical practice. The analysis using FOM provides substantial and quantifiable evidence in determining the acquisition methods. Furthermore, the customized in-house phantom is recommended as a candidate to optimization tools for clinical medical physicists.