Sebastian Merino, Adriana Romero, Roberto Lavarello, Andres Coila
{"title":"Regularized Joint Estimator of the Nonlinearity Parameter and Attenuation Coefficient Using a Nonlinear Least-Squares Algorithm.","authors":"Sebastian Merino, Adriana Romero, Roberto Lavarello, Andres Coila","doi":"10.1177/01617346251362389","DOIUrl":null,"url":null,"abstract":"<p><p>The acoustic nonlinearity parameter (B/A) could enhance the diagnostic capabilities of conventional ultrasonography and quantitative ultrasound in tissues and diseases. Nonlinear acoustic propagation theory of plane waves has been used to develop a dual-energy model of the depletion of the fundamental related to the Gol'dberg number and subsequently to the B/A of media (a reference phantom is used as a baseline). The depletion method, however, needs a priori information of the attenuation coefficient (AC) of the assessed media. For this reason, recently, a work introduced a simultaneous estimator of the B/A and AC based on fitting depletion method measurements to a nonlinear model using the iterative algorithm Gauss-Newton Levenberg-Marquardt (GNLM). However, the GNLM method presented high sensitivity to the initial guess values of the algorithm which limits the robustness of the approach. In the present work, the Gauss-Newton method is combined with a total variation regularization approach (GNTV), which is achievable by expanding the nonlinear model of the GNLM method for joint estimation of the B/A and AC of all pixels of the parametric images instead of a block-wise approach. In addition, the GNTV used compounding data from several tone-burst transmissions at different center frequencies rather than only one narrowband tone-burst. The results suggest that incorporating regularization and increasing the number of frequencies improves the robustness of the GNTV compared to the GNLM method by accurately estimating B/A values in uniform and nonuniform experimental phantoms (mean relative error less than 18%). The best performance of B/A reconstruction was observed when the sample medium exhibited a constant Gol'dberg number.</p>","PeriodicalId":49401,"journal":{"name":"Ultrasonic Imaging","volume":" ","pages":"270-282"},"PeriodicalIF":2.5000,"publicationDate":"2025-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ultrasonic Imaging","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/01617346251362389","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/9/10 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0
Abstract
The acoustic nonlinearity parameter (B/A) could enhance the diagnostic capabilities of conventional ultrasonography and quantitative ultrasound in tissues and diseases. Nonlinear acoustic propagation theory of plane waves has been used to develop a dual-energy model of the depletion of the fundamental related to the Gol'dberg number and subsequently to the B/A of media (a reference phantom is used as a baseline). The depletion method, however, needs a priori information of the attenuation coefficient (AC) of the assessed media. For this reason, recently, a work introduced a simultaneous estimator of the B/A and AC based on fitting depletion method measurements to a nonlinear model using the iterative algorithm Gauss-Newton Levenberg-Marquardt (GNLM). However, the GNLM method presented high sensitivity to the initial guess values of the algorithm which limits the robustness of the approach. In the present work, the Gauss-Newton method is combined with a total variation regularization approach (GNTV), which is achievable by expanding the nonlinear model of the GNLM method for joint estimation of the B/A and AC of all pixels of the parametric images instead of a block-wise approach. In addition, the GNTV used compounding data from several tone-burst transmissions at different center frequencies rather than only one narrowband tone-burst. The results suggest that incorporating regularization and increasing the number of frequencies improves the robustness of the GNTV compared to the GNLM method by accurately estimating B/A values in uniform and nonuniform experimental phantoms (mean relative error less than 18%). The best performance of B/A reconstruction was observed when the sample medium exhibited a constant Gol'dberg number.
期刊介绍:
Ultrasonic Imaging provides rapid publication for original and exceptional papers concerned with the development and application of ultrasonic-imaging technology. Ultrasonic Imaging publishes articles in the following areas: theoretical and experimental aspects of advanced methods and instrumentation for imaging