Harnessing the potential of phytochemicals to design anti-filarial molecules targeting the MurE enzyme of Brugia malayi: a hierarchical virtual screening and molecular dynamics simulation study.
D Prabhu, M Sureshan, S Rajamanikandan, J Jeyakanthan
{"title":"Harnessing the potential of phytochemicals to design anti-filarial molecules targeting the MurE enzyme of <i>Brugia malayi</i>: a hierarchical virtual screening and molecular dynamics simulation study.","authors":"D Prabhu, M Sureshan, S Rajamanikandan, J Jeyakanthan","doi":"10.1080/1062936X.2025.2556512","DOIUrl":null,"url":null,"abstract":"<p><p><i>Brugia malayi</i>, a causative agent of lymphatic filariasis, relies on its endosymbiont <i>Wolbachia</i> for survival. MurE ligase, a key enzyme in <i>Wolbachia</i> peptidoglycan biosynthesis, serves as a promising drug target for anti-filarial therapy. In this study, we employed a hierarchical virtual screening pipeline to identify phytochemical inhibitors targeting the MurE enzyme of the <i>Wolbachia</i> endosymbiont of <i>B. malayi</i> (<i>wBm</i>MurE). A validated high-quality model of <i>wBm</i>MurE was used to screen 17,967 phytochemicals, and the identified hits were subjected to toxicity profiling, and ADME filters to select potent drug-like candidates. Five phytochemicals such as biotin, quisqualic acid, succinic acid, 9,14-dihydroxyoctadecanoic acid, and <i>N</i>-isovaleroylglycine with permissible ADME profiles showed favourable binding affinities (GlideScore range: -12.86 to -10.57 kcal/mol), and stable interactions with catalytically important residues were selected from screened hits. Comparative analysis with reported MurE inhibitors validated the superior affinity and drug-like behaviour of our identified leads. Molecular dynamics simulations of 300 ns confirmed the conformational stability of ligand-bound complexes, while MM-GBSA analysis supported their favourable binding free energies. The results revealed that the identified compounds have the tendency of binding within substrate binding cavity of <i>wBm</i>MurE. These findings suggest that selected phytochemicals could serve as starting points for the development of novel anti-filarial agents.</p>","PeriodicalId":21446,"journal":{"name":"SAR and QSAR in Environmental Research","volume":"36 8","pages":"753-773"},"PeriodicalIF":2.3000,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SAR and QSAR in Environmental Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/1062936X.2025.2556512","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/9/10 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Brugia malayi, a causative agent of lymphatic filariasis, relies on its endosymbiont Wolbachia for survival. MurE ligase, a key enzyme in Wolbachia peptidoglycan biosynthesis, serves as a promising drug target for anti-filarial therapy. In this study, we employed a hierarchical virtual screening pipeline to identify phytochemical inhibitors targeting the MurE enzyme of the Wolbachia endosymbiont of B. malayi (wBmMurE). A validated high-quality model of wBmMurE was used to screen 17,967 phytochemicals, and the identified hits were subjected to toxicity profiling, and ADME filters to select potent drug-like candidates. Five phytochemicals such as biotin, quisqualic acid, succinic acid, 9,14-dihydroxyoctadecanoic acid, and N-isovaleroylglycine with permissible ADME profiles showed favourable binding affinities (GlideScore range: -12.86 to -10.57 kcal/mol), and stable interactions with catalytically important residues were selected from screened hits. Comparative analysis with reported MurE inhibitors validated the superior affinity and drug-like behaviour of our identified leads. Molecular dynamics simulations of 300 ns confirmed the conformational stability of ligand-bound complexes, while MM-GBSA analysis supported their favourable binding free energies. The results revealed that the identified compounds have the tendency of binding within substrate binding cavity of wBmMurE. These findings suggest that selected phytochemicals could serve as starting points for the development of novel anti-filarial agents.
期刊介绍:
SAR and QSAR in Environmental Research is an international journal welcoming papers on the fundamental and practical aspects of the structure-activity and structure-property relationships in the fields of environmental science, agrochemistry, toxicology, pharmacology and applied chemistry. A unique aspect of the journal is the focus on emerging techniques for the building of SAR and QSAR models in these widely varying fields. The scope of the journal includes, but is not limited to, the topics of topological and physicochemical descriptors, mathematical, statistical and graphical methods for data analysis, computer methods and programs, original applications and comparative studies. In addition to primary scientific papers, the journal contains reviews of books and software and news of conferences. Special issues on topics of current and widespread interest to the SAR and QSAR community will be published from time to time.