{"title":"Molecular Insights into the Pathophysiology of Dysregulated Erythropoiesis: The Crucial Role of Iron Homeostasis.","authors":"Tohru Fujiwara, Hideo Harigae","doi":"10.1080/10985549.2025.2553648","DOIUrl":null,"url":null,"abstract":"<p><p>Erythropoiesis, i.e., process of red blood cell (RBC) production, is highly dependent on iron, with 60-70% of the total body iron incorporated into hemoglobin. Iron homeostasis is tightly regulated, given that both iron overload and deficiency can impair RBC development and function. Iron-loading anemias, such as sideroblastic anemia and thalassemia, are associated with ineffective erythropoiesis and systemic iron overload. Recent studies also highlight the role of ferroptosis, i.e., iron-dependent cell death, in erythroid failure under conditions of iron overload. Transcriptional repressor BTB and CNC homology 1 (BACH1), which is regulated by intracellular heme, is a potential key mediator of ferroptosis. In iron deficiency, limited iron availability impairs heme and globin biosynthesis, mitochondrial function, and erythropoietin responsiveness, while also inducing widespread changes in gene expression through DNA methylation, all of which contribute to dysregulated erythropoiesis. Under iron deficiency, BACH1 plays a critical role in maintaining the balance between heme and globin by suppressing globin gene expression, thereby preventing the aggregation of toxic non-heme globin. This review summarizes the current understanding of the mechanisms by which iron imbalance contributes to erythropoietic failure and highlights BACH1 as a potential integrative regulator in the pathophysiology of anemia in both iron-overload and iron-deficient states.</p>","PeriodicalId":18658,"journal":{"name":"Molecular and Cellular Biology","volume":" ","pages":"1-14"},"PeriodicalIF":2.7000,"publicationDate":"2025-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular and Cellular Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/10985549.2025.2553648","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Erythropoiesis, i.e., process of red blood cell (RBC) production, is highly dependent on iron, with 60-70% of the total body iron incorporated into hemoglobin. Iron homeostasis is tightly regulated, given that both iron overload and deficiency can impair RBC development and function. Iron-loading anemias, such as sideroblastic anemia and thalassemia, are associated with ineffective erythropoiesis and systemic iron overload. Recent studies also highlight the role of ferroptosis, i.e., iron-dependent cell death, in erythroid failure under conditions of iron overload. Transcriptional repressor BTB and CNC homology 1 (BACH1), which is regulated by intracellular heme, is a potential key mediator of ferroptosis. In iron deficiency, limited iron availability impairs heme and globin biosynthesis, mitochondrial function, and erythropoietin responsiveness, while also inducing widespread changes in gene expression through DNA methylation, all of which contribute to dysregulated erythropoiesis. Under iron deficiency, BACH1 plays a critical role in maintaining the balance between heme and globin by suppressing globin gene expression, thereby preventing the aggregation of toxic non-heme globin. This review summarizes the current understanding of the mechanisms by which iron imbalance contributes to erythropoietic failure and highlights BACH1 as a potential integrative regulator in the pathophysiology of anemia in both iron-overload and iron-deficient states.
期刊介绍:
Molecular and Cellular Biology (MCB) showcases significant discoveries in cellular morphology and function, genome organization, regulation of genetic expression, morphogenesis, and somatic cell genetics. The journal also examines viral systems, publishing papers that emphasize their impact on the cell.