CL316,243 and skeletal muscle metabolism: role of sex and estrogen receptor beta.

IF 3.9 3区 医学 Q2 ENDOCRINOLOGY & METABOLISM
Journal of Endocrinology Pub Date : 2025-09-25 Print Date: 2025-09-01 DOI:10.1530/JOE-25-0005
Alan Maloney, Jinseok Lee, Eric D Queathem, Kylie A Schaller, Shahad Buckhary, Dennis B Lubahn, Rudy J Valentine, Victoria J Vieira-Potter
{"title":"CL316,243 and skeletal muscle metabolism: role of sex and estrogen receptor beta.","authors":"Alan Maloney, Jinseok Lee, Eric D Queathem, Kylie A Schaller, Shahad Buckhary, Dennis B Lubahn, Rudy J Valentine, Victoria J Vieira-Potter","doi":"10.1530/JOE-25-0005","DOIUrl":null,"url":null,"abstract":"<p><p>CL316,243 (CL), a beta 3 adrenergic receptor (B3-AR) agonist, has 'exercise mimetic' effects in adipose tissue. CL may also positively affect skeletal muscle (SM), yet the role of estrogen receptor beta (ERβ) in mediating SM-specific effects of CL is not known. We investigated the effects of CL on SM metabolism, as well as the role played by ERβ. High-fat diet-fed male and female wild-type (WT) and ERβ DBD knockout (KO) mice were administered CL daily for 2 weeks. Quadriceps SM protein markers of fatty acid oxidation (FatOx), protein synthesis, and protein catabolism were assessed. CL increased relative lean mass in both sexes (P = 0.012). In females, CL increased FatOx in WT, yet reduced FatOx in KO, while among males, CL reduced FatOx independent of genotype (P = 0.04). Uncoupling protein 2 (UCP2) and fatty acid synthase (FASN) abundance were higher in females (P = 0.004 and 0.037, respectively), and in both sexes, KO mice had higher SM UCP2 abundance (P = 0.022). CL increased phosphorylated acetyl-CoA carboxylase in males, yet reduced it in females (P = 0.015). Similarly, CL affected p706S kinase abundance (indicative of anabolic signaling) in a sexually dimorphic manner, increasing in males and decreasing in females. CL robustly increased SM FASN across sexes and genotypes (P < 0.001). In summary, the most salient finding was that CL increased SM FASN content independent of sex and ERβ genomic activity; additional novel sex-divergent effects of CL on SM metabolism were identified, some of which were affected by ERβ genomic activity.</p>","PeriodicalId":15740,"journal":{"name":"Journal of Endocrinology","volume":" ","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Endocrinology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1530/JOE-25-0005","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/9/1 0:00:00","PubModel":"Print","JCR":"Q2","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0

Abstract

CL316,243 (CL), a beta 3 adrenergic receptor (B3-AR) agonist, has 'exercise mimetic' effects in adipose tissue. CL may also positively affect skeletal muscle (SM), yet the role of estrogen receptor beta (ERβ) in mediating SM-specific effects of CL is not known. We investigated the effects of CL on SM metabolism, as well as the role played by ERβ. High-fat diet-fed male and female wild-type (WT) and ERβ DBD knockout (KO) mice were administered CL daily for 2 weeks. Quadriceps SM protein markers of fatty acid oxidation (FatOx), protein synthesis, and protein catabolism were assessed. CL increased relative lean mass in both sexes (P = 0.012). In females, CL increased FatOx in WT, yet reduced FatOx in KO, while among males, CL reduced FatOx independent of genotype (P = 0.04). Uncoupling protein 2 (UCP2) and fatty acid synthase (FASN) abundance were higher in females (P = 0.004 and 0.037, respectively), and in both sexes, KO mice had higher SM UCP2 abundance (P = 0.022). CL increased phosphorylated acetyl-CoA carboxylase in males, yet reduced it in females (P = 0.015). Similarly, CL affected p706S kinase abundance (indicative of anabolic signaling) in a sexually dimorphic manner, increasing in males and decreasing in females. CL robustly increased SM FASN across sexes and genotypes (P < 0.001). In summary, the most salient finding was that CL increased SM FASN content independent of sex and ERβ genomic activity; additional novel sex-divergent effects of CL on SM metabolism were identified, some of which were affected by ERβ genomic activity.

CL316,243与骨骼肌代谢:性别和雌激素受体β的作用。
目的:β 3肾上腺素能受体(B3-AR)激动剂CL316,243 (CL)在脂肪组织(AT)中具有“运动模拟”作用。CL也可能对骨骼肌(SM)产生积极影响,但雌激素受体β (ERβ)在CL介导SM特异性效应中的作用尚不清楚。我们研究了CL对SM代谢的影响,以及ERβ的作用。方法:高脂饮食喂养的野生型(WT)和ERβ DBD敲除(KO)小鼠,每天给予CL 2周。测定股四头肌SM脂肪酸氧化(FatOx)、蛋白质合成和蛋白质分解代谢的蛋白质标志物。结果:CL增加了男女的相对瘦质量(P=0.012)。在女性中,CL增加了WT患者的FatOx,而降低了KO患者的FatOx,而在男性中,CL降低了与基因型无关的FatOx (P=0.04)。解偶联蛋白2 (UCP2)和脂肪酸合成酶(FASN)丰度在雌性中较高(P分别为0.004和0.037),在雌雄小鼠中,KO小鼠具有较高的SM UCP2丰度(P=0.022)。CL增加了男性磷酸化乙酰辅酶a羧化酶(指示FatOx),而降低了女性(P=0.015)。同样,CL以两性二态的方式影响p706S激酶丰度(表明合成代谢信号),在雄性中增加,在雌性中减少。结论:CL增加了SM FASN含量,与性别和ERβ基因组活性无关。此外,还发现了CL对SM代谢的新的性别差异效应,其中一些效应受ERβ基因组活性丧失的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Endocrinology
Journal of Endocrinology 医学-内分泌学与代谢
CiteScore
7.90
自引率
2.50%
发文量
113
审稿时长
4-8 weeks
期刊介绍: Journal of Endocrinology is a leading global journal that publishes original research articles, reviews and science guidelines. Its focus is on endocrine physiology and metabolism, including hormone secretion; hormone action; biological effects. The journal publishes basic and translational studies at the organ, tissue and whole organism level.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信