Off-target structural insights: ArnA and AcrB in bacterial membrane-protein cryo-EM analysis.

IF 3.8 4区 生物学 Q2 BIOCHEMICAL RESEARCH METHODS
Mehmet Caliseki, Ufuk Borucu, Sathish K N Yadav, Christiane Schaffitzel, Burak Veli Kabasakal
{"title":"Off-target structural insights: ArnA and AcrB in bacterial membrane-protein cryo-EM analysis.","authors":"Mehmet Caliseki, Ufuk Borucu, Sathish K N Yadav, Christiane Schaffitzel, Burak Veli Kabasakal","doi":"10.1107/S2059798325007089","DOIUrl":null,"url":null,"abstract":"<p><p>Membrane-protein quality control in Escherichia coli involves coordinated actions of the AAA+ protease FtsH, the insertase YidC and the regulatory complex HflKC. These systems maintain proteostasis by facilitating membrane-protein insertion, folding and degradation. To gain structural insights into a putative complex formed by FtsH and YidC, we performed single-particle cryogenic electron microscopy on detergent-solubilized membrane samples, from which FtsH and YidC were purified using Ni-NTA affinity and size-exclusion chromatography. Although SDS-PAGE analysis indicated high purity of these proteins, cryo-EM data sets unexpectedly yielded high-resolution structures of ArnA and AcrB at 4.0 and 2.9 Å resolution, respectively. ArnA is a bifunctional enzyme involved in lipid A modification and polymyxin resistance, while AcrB is a multidrug efflux transporter of the AcrAB-TolC system. ArnA and AcrB, known Ni-NTA purification contaminants, were also consistently detected by mass spectrometry in Strep-Tactin affinity-purified samples, validating their presence independently of affinity-tag selection. ArnA, which is typically cytoplasmic, was consistently found in membrane-isolated samples, indicating an association with membrane components. Only 2D class averages corresponding to the cytoplasmic AAA+ domain of FtsH were observed; neither side views of full-length FtsH nor densities corresponding to an intact FtsH-YidC complex could be identified, due to the conformational flexibility of the FtsH complex and its transient interaction with YidC, which limited particle alignment and stable classification in cryo-EM data sets. Two-dimensional class averages revealed additional particles resembling GroEL and cytochrome bo<sub>3</sub> oxidase. These results underscore the utility of cryo-EM in uncovering off-target yet structurally well defined complexes, which may reflect physiologically relevant interactions or purification biases during membrane-protein overexpression.</p>","PeriodicalId":7116,"journal":{"name":"Acta Crystallographica. Section D, Structural Biology","volume":" ","pages":"545-557"},"PeriodicalIF":3.8000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12485490/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Crystallographica. Section D, Structural Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1107/S2059798325007089","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/9/10 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Membrane-protein quality control in Escherichia coli involves coordinated actions of the AAA+ protease FtsH, the insertase YidC and the regulatory complex HflKC. These systems maintain proteostasis by facilitating membrane-protein insertion, folding and degradation. To gain structural insights into a putative complex formed by FtsH and YidC, we performed single-particle cryogenic electron microscopy on detergent-solubilized membrane samples, from which FtsH and YidC were purified using Ni-NTA affinity and size-exclusion chromatography. Although SDS-PAGE analysis indicated high purity of these proteins, cryo-EM data sets unexpectedly yielded high-resolution structures of ArnA and AcrB at 4.0 and 2.9 Å resolution, respectively. ArnA is a bifunctional enzyme involved in lipid A modification and polymyxin resistance, while AcrB is a multidrug efflux transporter of the AcrAB-TolC system. ArnA and AcrB, known Ni-NTA purification contaminants, were also consistently detected by mass spectrometry in Strep-Tactin affinity-purified samples, validating their presence independently of affinity-tag selection. ArnA, which is typically cytoplasmic, was consistently found in membrane-isolated samples, indicating an association with membrane components. Only 2D class averages corresponding to the cytoplasmic AAA+ domain of FtsH were observed; neither side views of full-length FtsH nor densities corresponding to an intact FtsH-YidC complex could be identified, due to the conformational flexibility of the FtsH complex and its transient interaction with YidC, which limited particle alignment and stable classification in cryo-EM data sets. Two-dimensional class averages revealed additional particles resembling GroEL and cytochrome bo3 oxidase. These results underscore the utility of cryo-EM in uncovering off-target yet structurally well defined complexes, which may reflect physiologically relevant interactions or purification biases during membrane-protein overexpression.

脱靶结构洞察:细菌膜蛋白冷冻电镜分析中的ArnA和AcrB。
大肠杆菌的膜蛋白质量控制涉及AAA+蛋白酶FtsH、插入酶YidC和调控复合体HflKC的协调作用。这些系统通过促进膜蛋白的插入、折叠和降解来维持蛋白质稳态。为了深入了解FtsH和YidC可能形成的复合物的结构,我们对洗涤剂溶解的膜样品进行了单颗粒低温电子显微镜观察,使用Ni-NTA亲和层析和尺寸排除层析纯化了FtsH和YidC。虽然SDS-PAGE分析表明这些蛋白的纯度很高,但冷冻电镜数据集意外地获得了ArnA和AcrB的高分辨率结构,分别为4.0和2.9 Å分辨率。ArnA是参与脂质a修饰和多粘菌素耐药的双功能酶,而AcrB是acrabb - tolc系统的多药物外排转运体。已知的Ni-NTA纯化污染物ArnA和AcrB也在strep - tacn亲和纯化的样品中通过质谱法一致检测到,验证了它们独立于亲和标签选择的存在。ArnA是典型的细胞质,在膜分离样品中一致发现,表明与膜组分有关。仅观察到FtsH胞质AAA+结构域对应的2D类平均值;由于FtsH配合物的构象灵活性及其与YidC的瞬态相互作用,限制了低温电镜数据集中的粒子排列和稳定分类,因此既不能识别全长FtsH的侧面视图,也不能识别完整FtsH-YidC配合物对应的密度。二维类平均显示额外的颗粒类似于GroEL和细胞色素bo3氧化酶。这些结果强调了冷冻电镜在揭示脱靶但结构明确的复合物方面的效用,这些复合物可能反映了膜蛋白过表达过程中生理相关的相互作用或纯化偏差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Acta Crystallographica. Section D, Structural Biology
Acta Crystallographica. Section D, Structural Biology BIOCHEMICAL RESEARCH METHODSBIOCHEMISTRY &-BIOCHEMISTRY & MOLECULAR BIOLOGY
CiteScore
4.50
自引率
13.60%
发文量
216
期刊介绍: Acta Crystallographica Section D welcomes the submission of articles covering any aspect of structural biology, with a particular emphasis on the structures of biological macromolecules or the methods used to determine them. Reports on new structures of biological importance may address the smallest macromolecules to the largest complex molecular machines. These structures may have been determined using any structural biology technique including crystallography, NMR, cryoEM and/or other techniques. The key criterion is that such articles must present significant new insights into biological, chemical or medical sciences. The inclusion of complementary data that support the conclusions drawn from the structural studies (such as binding studies, mass spectrometry, enzyme assays, or analysis of mutants or other modified forms of biological macromolecule) is encouraged. Methods articles may include new approaches to any aspect of biological structure determination or structure analysis but will only be accepted where they focus on new methods that are demonstrated to be of general applicability and importance to structural biology. Articles describing particularly difficult problems in structural biology are also welcomed, if the analysis would provide useful insights to others facing similar problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信