Sadikshya Rijal, Kylie Standage-Beier, Rong Zhang, Austin Stone, Abdelrahman Youssef, Xiao Wang and Xiao-Jun Tian*,
{"title":"CRISPRi-Linked Multimodule Negative Feedback Loops to Address Winner-Take-All Resource Competition","authors":"Sadikshya Rijal, Kylie Standage-Beier, Rong Zhang, Austin Stone, Abdelrahman Youssef, Xiao Wang and Xiao-Jun Tian*, ","doi":"10.1021/acssynbio.5c00394","DOIUrl":null,"url":null,"abstract":"<p >Cellular resource limitations create unintended interactions among synthetic gene circuit modules, compromising circuit modularity. This challenge is particularly pronounced in circuits with positive feedback, where uneven resource allocation can lead to Winner-Takes-All (WTA) behavior, favoring one module at the expense of others. In this study, we experimentally implemented a Negatively Competitive Regulatory (NCR) controller using CRISPR interference (CRISPRi) and evaluated its effectiveness in mitigating WTA behavior in two gene circuits: dual self-activation and cascading bistable switch. We chromosomally integrated a tunable dCas9 gene and designed module-specific gRNAs, with each module encoding its own gRNA to self-repress via competition for limited dCas9. This configuration introduces strong negative feedback to the more active module while reallocating resources to the less active one, promoting balanced module activation. Compared to the control group lacking dCas9-mediated repression, the NCR controller significantly increased module coactivation and suppressed WTA behavior. Our quantitative results demonstrate that NCR provides an effective strategy for regulating resource competition and improving the modularity of synthetic gene circuits.</p>","PeriodicalId":26,"journal":{"name":"ACS Synthetic Biology","volume":"14 9","pages":"3646–3654"},"PeriodicalIF":3.9000,"publicationDate":"2025-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Synthetic Biology","FirstCategoryId":"99","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acssynbio.5c00394","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Cellular resource limitations create unintended interactions among synthetic gene circuit modules, compromising circuit modularity. This challenge is particularly pronounced in circuits with positive feedback, where uneven resource allocation can lead to Winner-Takes-All (WTA) behavior, favoring one module at the expense of others. In this study, we experimentally implemented a Negatively Competitive Regulatory (NCR) controller using CRISPR interference (CRISPRi) and evaluated its effectiveness in mitigating WTA behavior in two gene circuits: dual self-activation and cascading bistable switch. We chromosomally integrated a tunable dCas9 gene and designed module-specific gRNAs, with each module encoding its own gRNA to self-repress via competition for limited dCas9. This configuration introduces strong negative feedback to the more active module while reallocating resources to the less active one, promoting balanced module activation. Compared to the control group lacking dCas9-mediated repression, the NCR controller significantly increased module coactivation and suppressed WTA behavior. Our quantitative results demonstrate that NCR provides an effective strategy for regulating resource competition and improving the modularity of synthetic gene circuits.
期刊介绍:
The journal is particularly interested in studies on the design and synthesis of new genetic circuits and gene products; computational methods in the design of systems; and integrative applied approaches to understanding disease and metabolism.
Topics may include, but are not limited to:
Design and optimization of genetic systems
Genetic circuit design and their principles for their organization into programs
Computational methods to aid the design of genetic systems
Experimental methods to quantify genetic parts, circuits, and metabolic fluxes
Genetic parts libraries: their creation, analysis, and ontological representation
Protein engineering including computational design
Metabolic engineering and cellular manufacturing, including biomass conversion
Natural product access, engineering, and production
Creative and innovative applications of cellular programming
Medical applications, tissue engineering, and the programming of therapeutic cells
Minimal cell design and construction
Genomics and genome replacement strategies
Viral engineering
Automated and robotic assembly platforms for synthetic biology
DNA synthesis methodologies
Metagenomics and synthetic metagenomic analysis
Bioinformatics applied to gene discovery, chemoinformatics, and pathway construction
Gene optimization
Methods for genome-scale measurements of transcription and metabolomics
Systems biology and methods to integrate multiple data sources
in vitro and cell-free synthetic biology and molecular programming
Nucleic acid engineering.