Simona Lange, Martin Ebeling, Athéna Loye, Florian Wanke, Juliane Siebourg-Polster, Tania J. J. Sudharshan, Franziska Völlmy, Jakub Kralik, Bérengère Vidal, Kerstin Hahn, Lynette C. Foo, Jan Hoeber
{"title":"Human myelinated brain organoids with integrated microglia as a model for myelin repair and remyelinating therapies","authors":"Simona Lange, Martin Ebeling, Athéna Loye, Florian Wanke, Juliane Siebourg-Polster, Tania J. J. Sudharshan, Franziska Völlmy, Jakub Kralik, Bérengère Vidal, Kerstin Hahn, Lynette C. Foo, Jan Hoeber","doi":"10.1126/scitranslmed.adp7047","DOIUrl":null,"url":null,"abstract":"<div >Oligodendrocytes, the myelinating cells of the central nervous system (CNS), are essential for the formation of myelin sheaths and pivotal for maintaining axonal integrity and conduction. Disruption of these cells and the myelin sheaths they produce is a hallmark of demyelinating conditions like multiple sclerosis or those resulting from certain drug side effects, leading to profound neurological impairments. In this study, we created a human brain organoid comprising neurons, astrocytes, and myelinating oligodendrocytes. By integrating induced pluripotent stem cell–derived microglia, we endowed these myelinated human brain organoids (MHBOs) with immune characteristics. MHBOs with microglia (MHBOs +MG) enabled the investigation of demyelination and remyelination—a process in which myelin sheaths are regenerated—in a human context. After toxin-induced demyelination, we observed a reduction in myelin followed by subsequent self-driven remyelination. Proteomic and transcriptomic analyses provided a molecular signature of demyelination and myelin recovery indicating a central role for microglia in the remyelination process. Furthermore, the application of the pro-remyelinating compounds clemastine, XAV939, and BQ3020 further enhanced remyelination in MHBOs +MG but was ineffective in the absence of microglia. Cross-validation of our findings in mouse cerebellar slice cultures confirmed that the pro-remyelinating compounds were effective ex vivo, suggesting the translational potential of our MHBOs +MG model.</div>","PeriodicalId":21580,"journal":{"name":"Science Translational Medicine","volume":"17 815","pages":""},"PeriodicalIF":14.6000,"publicationDate":"2025-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Translational Medicine","FirstCategoryId":"3","ListUrlMain":"https://www.science.org/doi/10.1126/scitranslmed.adp7047","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Oligodendrocytes, the myelinating cells of the central nervous system (CNS), are essential for the formation of myelin sheaths and pivotal for maintaining axonal integrity and conduction. Disruption of these cells and the myelin sheaths they produce is a hallmark of demyelinating conditions like multiple sclerosis or those resulting from certain drug side effects, leading to profound neurological impairments. In this study, we created a human brain organoid comprising neurons, astrocytes, and myelinating oligodendrocytes. By integrating induced pluripotent stem cell–derived microglia, we endowed these myelinated human brain organoids (MHBOs) with immune characteristics. MHBOs with microglia (MHBOs +MG) enabled the investigation of demyelination and remyelination—a process in which myelin sheaths are regenerated—in a human context. After toxin-induced demyelination, we observed a reduction in myelin followed by subsequent self-driven remyelination. Proteomic and transcriptomic analyses provided a molecular signature of demyelination and myelin recovery indicating a central role for microglia in the remyelination process. Furthermore, the application of the pro-remyelinating compounds clemastine, XAV939, and BQ3020 further enhanced remyelination in MHBOs +MG but was ineffective in the absence of microglia. Cross-validation of our findings in mouse cerebellar slice cultures confirmed that the pro-remyelinating compounds were effective ex vivo, suggesting the translational potential of our MHBOs +MG model.
期刊介绍:
Science Translational Medicine is an online journal that focuses on publishing research at the intersection of science, engineering, and medicine. The goal of the journal is to promote human health by providing a platform for researchers from various disciplines to communicate their latest advancements in biomedical, translational, and clinical research.
The journal aims to address the slow translation of scientific knowledge into effective treatments and health measures. It publishes articles that fill the knowledge gaps between preclinical research and medical applications, with a focus on accelerating the translation of knowledge into new ways of preventing, diagnosing, and treating human diseases.
The scope of Science Translational Medicine includes various areas such as cardiovascular disease, immunology/vaccines, metabolism/diabetes/obesity, neuroscience/neurology/psychiatry, cancer, infectious diseases, policy, behavior, bioengineering, chemical genomics/drug discovery, imaging, applied physical sciences, medical nanotechnology, drug delivery, biomarkers, gene therapy/regenerative medicine, toxicology and pharmacokinetics, data mining, cell culture, animal and human studies, medical informatics, and other interdisciplinary approaches to medicine.
The target audience of the journal includes researchers and management in academia, government, and the biotechnology and pharmaceutical industries. It is also relevant to physician scientists, regulators, policy makers, investors, business developers, and funding agencies.