Doublet Structural Dynamics of Porous Euler Mass Sensor Nanobeam with Klein–Gordon Nonlocality

IF 0.9 4区 工程技术 Q4 MECHANICS
R. Selvamani, T. Prabhakaran, Farzad Ebrahimi
{"title":"Doublet Structural Dynamics of Porous Euler Mass Sensor Nanobeam with Klein–Gordon Nonlocality","authors":"R. Selvamani,&nbsp;T. Prabhakaran,&nbsp;Farzad Ebrahimi","doi":"10.1134/S0025654425600722","DOIUrl":null,"url":null,"abstract":"<p>This study investigates the doublet structural model for analyzing porous Euler mass sensor nanobeams, incorporating the concept of doublet mechanics alongside Bernstein polynomials with Klein–Gordon nonlocality. Bernstein polynomials serves as basis functions within the Rayleigh–Ritz method, facilitating conversional governing equations into a generalized eigenvalue problem. The study further employs orthogonal Bernstein polynomials for enhanced computational precision. By incorporating a mass sensor mechanism, the model leverages nanobeam sensitivity to detect small mass variations for nanoscale applications. Additionally, the research examines variable material properties and a range of boundary conditions, with significant emphasis on the effects of frequency parameter, normal stress, displacement, scaling effect parameter, beam length, doublet mechanics parameter, nonlocal parameter and resonant frequency. To validate the results, a comparative analysis is conducted, and the outcomes are tabulated to confirm the effectiveness of the approach. This study’s results may be useful for the optimal and safety design of nano-electro-mechanics systems.</p>","PeriodicalId":697,"journal":{"name":"Mechanics of Solids","volume":"60 3","pages":"2048 - 2069"},"PeriodicalIF":0.9000,"publicationDate":"2025-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechanics of Solids","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1134/S0025654425600722","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

Abstract

This study investigates the doublet structural model for analyzing porous Euler mass sensor nanobeams, incorporating the concept of doublet mechanics alongside Bernstein polynomials with Klein–Gordon nonlocality. Bernstein polynomials serves as basis functions within the Rayleigh–Ritz method, facilitating conversional governing equations into a generalized eigenvalue problem. The study further employs orthogonal Bernstein polynomials for enhanced computational precision. By incorporating a mass sensor mechanism, the model leverages nanobeam sensitivity to detect small mass variations for nanoscale applications. Additionally, the research examines variable material properties and a range of boundary conditions, with significant emphasis on the effects of frequency parameter, normal stress, displacement, scaling effect parameter, beam length, doublet mechanics parameter, nonlocal parameter and resonant frequency. To validate the results, a comparative analysis is conducted, and the outcomes are tabulated to confirm the effectiveness of the approach. This study’s results may be useful for the optimal and safety design of nano-electro-mechanics systems.

Abstract Image

Abstract Image

具有Klein-Gordon非定域的多孔欧拉质量传感器纳米梁的双重态结构动力学
本文研究了用于分析多孔欧拉质量传感器纳米梁的双重态结构模型,将双重态力学的概念与Bernstein多项式和Klein-Gordon非定域相结合。Bernstein多项式作为Rayleigh-Ritz方法中的基函数,便于将控制方程转换为广义特征值问题。进一步采用正交Bernstein多项式提高计算精度。通过结合质量传感器机制,该模型利用纳米束灵敏度来检测纳米级应用的小质量变化。此外,研究考察了可变材料性能和一系列边界条件,重点研究了频率参数、法向应力、位移、尺度效应参数、梁长、双重态力学参数、非局部参数和谐振频率的影响。为了验证结果,进行了比较分析,并将结果制成表格,以确认该方法的有效性。研究结果可为纳米机电系统的优化设计和安全设计提供参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Mechanics of Solids
Mechanics of Solids 医学-力学
CiteScore
1.20
自引率
42.90%
发文量
112
审稿时长
6-12 weeks
期刊介绍: Mechanics of Solids publishes articles in the general areas of dynamics of particles and rigid bodies and the mechanics of deformable solids. The journal has a goal of being a comprehensive record of up-to-the-minute research results. The journal coverage is vibration of discrete and continuous systems; stability and optimization of mechanical systems; automatic control theory; dynamics of multiple body systems; elasticity, viscoelasticity and plasticity; mechanics of composite materials; theory of structures and structural stability; wave propagation and impact of solids; fracture mechanics; micromechanics of solids; mechanics of granular and geological materials; structure-fluid interaction; mechanical behavior of materials; gyroscopes and navigation systems; and nanomechanics. Most of the articles in the journal are theoretical and analytical. They present a blend of basic mechanics theory with analysis of contemporary technological problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信