{"title":"Categorical pentagon relations and Koszul duality","authors":"Davide Gaiotto, Ahsan Khan","doi":"10.1007/s11005-025-01932-1","DOIUrl":null,"url":null,"abstract":"<div><p>The Kontsevich–Soibelman wall-crossing formula is known to control the jumping behaviour of BPS state-counting indices in four-dimensional theories with <span>\\(\\mathcal {N}=2\\)</span> supersymmetry. The formula can take two equivalent forms: a “fermionic” form with nice positivity properties and a “bosonic” form with a clear physical interpretation. In an important class of examples, the fermionic form of the formula has a mathematical categorification involving PBW bases for a Cohomological Hall Algebra. The bosonic form lacks an analogous categorification. We construct an equivalence of chain complexes, which categorifies the simplest example of the bosonic wall-crossing formula: the bosonic pentagon identity for the quantum dilogarithm. The chain complexes can be promoted to differential-graded algebras which we relate to the PBW bases of the relevant CoHA by a certain quadratic duality. The equivalence of complexes then follows from the relation between quadratic duality and Koszul duality. We argue that this is a special case of a general phenomenon: the bosonic wall-crossing formulae are categorified to equivalences of <span>\\(A_\\infty \\)</span> algebras which are quadratic dual to PBW presentations of algebras which underlie the fermionic wall-crossing formulae. We give a partial interpretation of our differential-graded algebras in terms of a holomorphic-topological version of BPS webs.</p></div>","PeriodicalId":685,"journal":{"name":"Letters in Mathematical Physics","volume":"115 5","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2025-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Letters in Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s11005-025-01932-1","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The Kontsevich–Soibelman wall-crossing formula is known to control the jumping behaviour of BPS state-counting indices in four-dimensional theories with \(\mathcal {N}=2\) supersymmetry. The formula can take two equivalent forms: a “fermionic” form with nice positivity properties and a “bosonic” form with a clear physical interpretation. In an important class of examples, the fermionic form of the formula has a mathematical categorification involving PBW bases for a Cohomological Hall Algebra. The bosonic form lacks an analogous categorification. We construct an equivalence of chain complexes, which categorifies the simplest example of the bosonic wall-crossing formula: the bosonic pentagon identity for the quantum dilogarithm. The chain complexes can be promoted to differential-graded algebras which we relate to the PBW bases of the relevant CoHA by a certain quadratic duality. The equivalence of complexes then follows from the relation between quadratic duality and Koszul duality. We argue that this is a special case of a general phenomenon: the bosonic wall-crossing formulae are categorified to equivalences of \(A_\infty \) algebras which are quadratic dual to PBW presentations of algebras which underlie the fermionic wall-crossing formulae. We give a partial interpretation of our differential-graded algebras in terms of a holomorphic-topological version of BPS webs.
期刊介绍:
The aim of Letters in Mathematical Physics is to attract the community''s attention on important and original developments in the area of mathematical physics and contemporary theoretical physics. The journal publishes letters and longer research articles, occasionally also articles containing topical reviews. We are committed to both fast publication and careful refereeing. In addition, the journal offers important contributions to modern mathematics in fields which have a potential physical application, and important developments in theoretical physics which have potential mathematical impact.