{"title":"Effect of Struts Arrangements on Lattice Structures: Experimental and Numerical Approach","authors":"Avinash, Mohammad Mursaleen, Navin Kumar","doi":"10.1134/S002565442560014X","DOIUrl":null,"url":null,"abstract":"<p>Lattice structures are employed in the aerospace, automotive, and medical industries due to their high energy absorption, high porosity, and high strength-to-density ratios. Besides the traditional manufacturing approach, here we employed additive manufacturing, Fused deposition modeling (FDM) approach. In this paper, effect of struts on compressive deformation behavior of Body-centered cubic (BCC), Helix body-centered cubic (HBCC), Half vertical strut body-centered cubic (HVSBCC) and Full vertical strut body center cubic (FVSBCC) structures are examined both numerically and experimentally. The results show that the half verticle strut body center cubic has superior properties. The compressive strength of the Half vertical strut body-centered cubic (9.5 MPa) is ~436.72% higher than simple body-centered cubic (1.77 MPa), ~139.89% higher than the helix body-centered cubic ( 3.96 MPa), and ~25% higher than full vertical strut body-centered cubic (7.6 MPa). Also, The energy absorption of half vertical strut body-centered (3.49 MJ/m<sup>3</sup>) is ~14817.39% higher than the simple body-centered cubic (0.23 MJ/m<sup>3</sup>), ~711.62% higher than the helix simple cubic (0.43MJ/m<sup>3</sup>) and ~36.8% higher than the full vertical strut body-centered cubic. Further, the strut variation among structures controls the Poisson ratio and ultimately the strain-induced deformation response. Hence, optimizing local strut alignments in the lattice structures guides to betterment of mechanical properties for varied applications.</p>","PeriodicalId":697,"journal":{"name":"Mechanics of Solids","volume":"60 3","pages":"2166 - 2179"},"PeriodicalIF":0.9000,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechanics of Solids","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1134/S002565442560014X","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0
Abstract
Lattice structures are employed in the aerospace, automotive, and medical industries due to their high energy absorption, high porosity, and high strength-to-density ratios. Besides the traditional manufacturing approach, here we employed additive manufacturing, Fused deposition modeling (FDM) approach. In this paper, effect of struts on compressive deformation behavior of Body-centered cubic (BCC), Helix body-centered cubic (HBCC), Half vertical strut body-centered cubic (HVSBCC) and Full vertical strut body center cubic (FVSBCC) structures are examined both numerically and experimentally. The results show that the half verticle strut body center cubic has superior properties. The compressive strength of the Half vertical strut body-centered cubic (9.5 MPa) is ~436.72% higher than simple body-centered cubic (1.77 MPa), ~139.89% higher than the helix body-centered cubic ( 3.96 MPa), and ~25% higher than full vertical strut body-centered cubic (7.6 MPa). Also, The energy absorption of half vertical strut body-centered (3.49 MJ/m3) is ~14817.39% higher than the simple body-centered cubic (0.23 MJ/m3), ~711.62% higher than the helix simple cubic (0.43MJ/m3) and ~36.8% higher than the full vertical strut body-centered cubic. Further, the strut variation among structures controls the Poisson ratio and ultimately the strain-induced deformation response. Hence, optimizing local strut alignments in the lattice structures guides to betterment of mechanical properties for varied applications.
期刊介绍:
Mechanics of Solids publishes articles in the general areas of dynamics of particles and rigid bodies and the mechanics of deformable solids. The journal has a goal of being a comprehensive record of up-to-the-minute research results. The journal coverage is vibration of discrete and continuous systems; stability and optimization of mechanical systems; automatic control theory; dynamics of multiple body systems; elasticity, viscoelasticity and plasticity; mechanics of composite materials; theory of structures and structural stability; wave propagation and impact of solids; fracture mechanics; micromechanics of solids; mechanics of granular and geological materials; structure-fluid interaction; mechanical behavior of materials; gyroscopes and navigation systems; and nanomechanics. Most of the articles in the journal are theoretical and analytical. They present a blend of basic mechanics theory with analysis of contemporary technological problems.