Realization functors in algebraic triangulated categories

IF 0.3 4区 数学 Q4 MATHEMATICS
Janina C. Letz, Julia Sauter
{"title":"Realization functors in algebraic triangulated categories","authors":"Janina C. Letz,&nbsp;Julia Sauter","doi":"10.1007/s12188-025-00289-5","DOIUrl":null,"url":null,"abstract":"<div><p>Let <span>\\({\\mathcal {T}}\\)</span> be an algebraic triangulated category and <span>\\({\\mathcal {C}}\\)</span> an extension-closed subcategory with <span>\\({{\\,\\textrm{Hom}\\,}}({\\mathcal {C}}, \\Sigma ^{&lt;0} {\\mathcal {C}})=0\\)</span>. Then <span>\\({\\mathcal {C}}\\)</span> has an exact structure induced from exact triangles in <span>\\({\\mathcal {T}}\\)</span>. Keller and Vossieck say that there exists a triangle functor <span>\\(\\operatorname {D}^{b}({\\mathcal {C}}) \\rightarrow {\\mathcal {T}}\\)</span> extending the inclusion <span>\\({\\mathcal {C}} \\subseteq {\\mathcal {T}}\\)</span>. We provide the missing details for a complete proof.</p></div>","PeriodicalId":50932,"journal":{"name":"Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg","volume":"95 1","pages":"83 - 92"},"PeriodicalIF":0.3000,"publicationDate":"2025-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s12188-025-00289-5.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s12188-025-00289-5","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let \({\mathcal {T}}\) be an algebraic triangulated category and \({\mathcal {C}}\) an extension-closed subcategory with \({{\,\textrm{Hom}\,}}({\mathcal {C}}, \Sigma ^{<0} {\mathcal {C}})=0\). Then \({\mathcal {C}}\) has an exact structure induced from exact triangles in \({\mathcal {T}}\). Keller and Vossieck say that there exists a triangle functor \(\operatorname {D}^{b}({\mathcal {C}}) \rightarrow {\mathcal {T}}\) extending the inclusion \({\mathcal {C}} \subseteq {\mathcal {T}}\). We provide the missing details for a complete proof.

代数三角范畴中的实现函子
设\({\mathcal {T}}\)是一个代数三角化范畴,\({\mathcal {C}}\)是一个扩展闭子范畴,\({{\,\textrm{Hom}\,}}({\mathcal {C}}, \Sigma ^{<0} {\mathcal {C}})=0\)。然后\({\mathcal {C}}\)有一个精确的结构,由\({\mathcal {T}}\)中的精确三角形导出。Keller和Vossieck说存在一个三角形函子\(\operatorname {D}^{b}({\mathcal {C}}) \rightarrow {\mathcal {T}}\)扩展了包含\({\mathcal {C}} \subseteq {\mathcal {T}}\)。我们提供了缺失的细节作为完整的证明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.80
自引率
0.00%
发文量
7
审稿时长
>12 weeks
期刊介绍: The first issue of the "Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg" was published in the year 1921. This international mathematical journal has since then provided a forum for significant research contributions. The journal covers all central areas of pure mathematics, such as algebra, complex analysis and geometry, differential geometry and global analysis, graph theory and discrete mathematics, Lie theory, number theory, and algebraic topology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信