On Lerch’s formula and zeros of the quadrilateral zeta function

IF 0.3 4区 数学 Q4 MATHEMATICS
Takashi Nakamura
{"title":"On Lerch’s formula and zeros of the quadrilateral zeta function","authors":"Takashi Nakamura","doi":"10.1007/s12188-025-00286-8","DOIUrl":null,"url":null,"abstract":"<div><p>Let <span>\\(0 &lt; a \\le 1/2\\)</span> and define the quadrilateral zeta function by <span>\\(2Q(s,a):= \\zeta (s,a) + \\zeta (s,1-a) + \\mathrm{{Li}}_s (e^{2\\pi ia}) + \\mathrm{{Li}}_s(e^{2\\pi i(1-a)})\\)</span>, where <span>\\(\\zeta (s,a)\\)</span> is the Hurwitz zeta function and <span>\\(\\mathrm{{Li}}_s (e^{2\\pi ia})\\)</span> is the periodic zeta function. In the present paper, we show that there exists a unique real number <span>\\(a_0 \\in (0,1/2)\\)</span> such that all real zeros of <i>Q</i>(<i>s</i>, <i>a</i>) are simple and are located only at the negative even integers just like <span>\\(\\zeta (s)\\)</span> if and only if <span>\\(a_0 &lt; a \\le 1/2\\)</span>. Moreover, we prove that <i>Q</i>(<i>s</i>, <i>a</i>) has infinitely many complex zeros in the region of absolute convergence and the critical strip when <span>\\(a \\in {\\mathbb {Q}} \\cap (0,1/2) \\setminus \\{1/6, 1/4, 1/3\\}\\)</span>. The Lerch formula, Hadamard product formula, Riemann-von Mangoldt formula for <i>Q</i>(<i>s</i>, <i>a</i>) are also shown.</p></div>","PeriodicalId":50932,"journal":{"name":"Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg","volume":"95 1","pages":"1 - 18"},"PeriodicalIF":0.3000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s12188-025-00286-8.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s12188-025-00286-8","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let \(0 < a \le 1/2\) and define the quadrilateral zeta function by \(2Q(s,a):= \zeta (s,a) + \zeta (s,1-a) + \mathrm{{Li}}_s (e^{2\pi ia}) + \mathrm{{Li}}_s(e^{2\pi i(1-a)})\), where \(\zeta (s,a)\) is the Hurwitz zeta function and \(\mathrm{{Li}}_s (e^{2\pi ia})\) is the periodic zeta function. In the present paper, we show that there exists a unique real number \(a_0 \in (0,1/2)\) such that all real zeros of Q(sa) are simple and are located only at the negative even integers just like \(\zeta (s)\) if and only if \(a_0 < a \le 1/2\). Moreover, we prove that Q(sa) has infinitely many complex zeros in the region of absolute convergence and the critical strip when \(a \in {\mathbb {Q}} \cap (0,1/2) \setminus \{1/6, 1/4, 1/3\}\). The Lerch formula, Hadamard product formula, Riemann-von Mangoldt formula for Q(sa) are also shown.

关于勒奇公式和四边形函数的零点
设\(0 < a \le 1/2\)并通过\(2Q(s,a):= \zeta (s,a) + \zeta (s,1-a) + \mathrm{{Li}}_s (e^{2\pi ia}) + \mathrm{{Li}}_s(e^{2\pi i(1-a)})\)定义四边形zeta函数,其中\(\zeta (s,a)\)是Hurwitz zeta函数\(\mathrm{{Li}}_s (e^{2\pi ia})\)是周期zeta函数。在本文中,我们证明了存在一个唯一实数\(a_0 \in (0,1/2)\),使得Q(s, a)的所有实数零都是简单的,并且只位于负偶整数\(\zeta (s)\),当且仅当\(a_0 < a \le 1/2\)。此外,我们证明了Q(s, a)在绝对收敛区域和\(a \in {\mathbb {Q}} \cap (0,1/2) \setminus \{1/6, 1/4, 1/3\}\)的临界带上有无穷多个复零。给出了Q(s, a)的Lerch公式、Hadamard积公式、Riemann-von Mangoldt公式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.80
自引率
0.00%
发文量
7
审稿时长
>12 weeks
期刊介绍: The first issue of the "Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg" was published in the year 1921. This international mathematical journal has since then provided a forum for significant research contributions. The journal covers all central areas of pure mathematics, such as algebra, complex analysis and geometry, differential geometry and global analysis, graph theory and discrete mathematics, Lie theory, number theory, and algebraic topology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信