On the representability of Hilbert cusp forms by theta series

IF 0.3 4区 数学 Q4 MATHEMATICS
Hisashi Kojima, Hiroshi Sakata
{"title":"On the representability of Hilbert cusp forms by theta series","authors":"Hisashi Kojima,&nbsp;Hiroshi Sakata","doi":"10.1007/s12188-025-00290-y","DOIUrl":null,"url":null,"abstract":"<div><p>Using trace formulas for Hecke operators, Eichler first provided a positive solution about basis problems of elliptic cusp forms by quadratic forms. J-L. Waldspurger established that elliptic cusp forms of arbitrary level are spanned by theta series by means of different and interesting ideas and methods. This result is given by Zagier’s analytic theorems, the Siegel main theorem of quadratic forms and the theory of Hecke operators. We intend to generalize Waldspurger’s results and determine theta series which span the space of Hilbert new forms over arbitrary totally real algebraic number fields following Waldspurger’s methods.</p></div>","PeriodicalId":50932,"journal":{"name":"Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg","volume":"95 1","pages":"19 - 49"},"PeriodicalIF":0.3000,"publicationDate":"2025-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s12188-025-00290-y.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s12188-025-00290-y","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Using trace formulas for Hecke operators, Eichler first provided a positive solution about basis problems of elliptic cusp forms by quadratic forms. J-L. Waldspurger established that elliptic cusp forms of arbitrary level are spanned by theta series by means of different and interesting ideas and methods. This result is given by Zagier’s analytic theorems, the Siegel main theorem of quadratic forms and the theory of Hecke operators. We intend to generalize Waldspurger’s results and determine theta series which span the space of Hilbert new forms over arbitrary totally real algebraic number fields following Waldspurger’s methods.

级数关于希尔伯特尖形的可表示性
利用Hecke算子的迹公式,Eichler首次用二次型给出了椭圆尖型基问题的正解。J-L。Waldspurger通过不同的有趣的思想和方法,建立了由级数张成任意水平的椭圆尖形。这一结果由Zagier解析定理、Siegel二次型主定理和Hecke算子理论给出。我们打算推广Waldspurger的结果,并根据Waldspurger的方法确定在任意全实数域上跨越Hilbert新形式空间的θ级数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.80
自引率
0.00%
发文量
7
审稿时长
>12 weeks
期刊介绍: The first issue of the "Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg" was published in the year 1921. This international mathematical journal has since then provided a forum for significant research contributions. The journal covers all central areas of pure mathematics, such as algebra, complex analysis and geometry, differential geometry and global analysis, graph theory and discrete mathematics, Lie theory, number theory, and algebraic topology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信