PepMSND: integrating multi-level feature engineering and comprehensive databases to enhance in vitro/in vivo peptide blood stability prediction†

IF 6.2 Q1 CHEMISTRY, MULTIDISCIPLINARY
Haomeng Hu, Chengyun Zhang, Zhenyu Xu, Jingjing Guo, An Su, Chengxi Li and Hongliang Duan
{"title":"PepMSND: integrating multi-level feature engineering and comprehensive databases to enhance in vitro/in vivo peptide blood stability prediction†","authors":"Haomeng Hu, Chengyun Zhang, Zhenyu Xu, Jingjing Guo, An Su, Chengxi Li and Hongliang Duan","doi":"10.1039/D5DD00118H","DOIUrl":null,"url":null,"abstract":"<p >Deep learning has emerged as a transformative tool for peptide drug discovery, yet predicting peptide blood stability—a critical determinant of bioavailability and therapeutic efficacy—remains a major challenge. While such a task can be accomplished through experiments, it requires much time and cost. Here, to address this challenge, we collect extensive experimental data on peptide stability in blood from public databases and the literature and construct a database of peptide blood stability that includes 635 samples. Based on this database, we develop a novel model called PepMSND, integrating KAN, Transformer, GAT, and SE(3)-Transformer to perform multi-level feature engineering for peptide blood stability prediction. Our model can achieve an ACC of 0.867 and an AUC of 0.912 on average and outperforms the baseline models. We also develop a user-friendly web interface for the PepMSND model, which is freely available at http://model.highslab.com/pepmsnd. This research is crucial for the development of novel peptides with strong blood stability, as the stability of peptide drugs directly determines their effectiveness and reliability in clinical applications.</p>","PeriodicalId":72816,"journal":{"name":"Digital discovery","volume":" 9","pages":" 2478-2490"},"PeriodicalIF":6.2000,"publicationDate":"2025-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/dd/d5dd00118h?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digital discovery","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/dd/d5dd00118h","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Deep learning has emerged as a transformative tool for peptide drug discovery, yet predicting peptide blood stability—a critical determinant of bioavailability and therapeutic efficacy—remains a major challenge. While such a task can be accomplished through experiments, it requires much time and cost. Here, to address this challenge, we collect extensive experimental data on peptide stability in blood from public databases and the literature and construct a database of peptide blood stability that includes 635 samples. Based on this database, we develop a novel model called PepMSND, integrating KAN, Transformer, GAT, and SE(3)-Transformer to perform multi-level feature engineering for peptide blood stability prediction. Our model can achieve an ACC of 0.867 and an AUC of 0.912 on average and outperforms the baseline models. We also develop a user-friendly web interface for the PepMSND model, which is freely available at http://model.highslab.com/pepmsnd. This research is crucial for the development of novel peptides with strong blood stability, as the stability of peptide drugs directly determines their effectiveness and reliability in clinical applications.

Abstract Image

PepMSND:整合多层次特征工程和综合数据库,提高体外/体内肽血稳定性预测†
深度学习已经成为多肽药物发现的变革性工具,但预测多肽血液稳定性(生物利用度和治疗效果的关键决定因素)仍然是一个主要挑战。虽然这样的任务可以通过实验来完成,但它需要大量的时间和成本。在这里,为了应对这一挑战,我们从公共数据库和文献中收集了大量关于血液中肽稳定性的实验数据,并构建了一个包括635个样本的肽血液稳定性数据库。基于该数据库,我们开发了一种名为PepMSND的新模型,该模型集成了KAN、Transformer、GAT和SE(3)-Transformer,用于多肽血稳定性预测的多级特征工程。我们的模型平均ACC为0.867,AUC为0.912,优于基线模型。我们还为PepMSND模型开发了一个用户友好的web界面,该界面可在http://model.highslab.com/pepmsnd上免费获得。这项研究对于开发具有较强血液稳定性的新型多肽具有重要意义,因为多肽药物的稳定性直接决定了其在临床应用中的有效性和可靠性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信