LMG-Net: A Lightweight Remote Sensing Change Detection Network With Multilevel Global Features

IF 4.4
Yutian Li;Wei Liu;Erzhu Li;Lianpeng Zhang;Xing Li
{"title":"LMG-Net: A Lightweight Remote Sensing Change Detection Network With Multilevel Global Features","authors":"Yutian Li;Wei Liu;Erzhu Li;Lianpeng Zhang;Xing Li","doi":"10.1109/LGRS.2025.3604651","DOIUrl":null,"url":null,"abstract":"Remote sensing change detection (RSCD) is a key tool for environmental monitoring and resource management, playing a significant role in monitoring dynamic surface changes. In practical applications, RSCD often requires high precision and efficient detection methods. However, traditional methods tend to involve high technical complexity and a large number of parameters and are susceptible to interference from complex background noise, leading to poor performance in detecting change areas. To address these issues, this letter proposes a lightweight RSCD network, LMG-Net. The model uses a lightweight encoder and incorporates a hierarchical transformer module (HTF) to suppress background noise and minimize parameter increase, effectively extracting multilevel global features. Additionally, this letter introduces a multidimensional cooperative attention guidance (MAG) mechanism, further enhancing the ability to detect boundary changes. The model has only 3.29 M parameters and a computational load of 3.89G, demonstrating its high applicability, particularly for real-time applications in resource-constrained environments. Experimental results show that LMG-Net achieves the state-of-the-art (SOTA) <inline-formula> <tex-math>${F}1$ </tex-math></inline-formula> scores and IoU values on the WHU-CD, SYSU-CD, and LEVIR-CD+ datasets: (94.79%, 90.09%), (82.29%, 69.90%), and (84.30%, 71.14%).","PeriodicalId":91017,"journal":{"name":"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society","volume":"22 ","pages":"1-5"},"PeriodicalIF":4.4000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/11145753/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Remote sensing change detection (RSCD) is a key tool for environmental monitoring and resource management, playing a significant role in monitoring dynamic surface changes. In practical applications, RSCD often requires high precision and efficient detection methods. However, traditional methods tend to involve high technical complexity and a large number of parameters and are susceptible to interference from complex background noise, leading to poor performance in detecting change areas. To address these issues, this letter proposes a lightweight RSCD network, LMG-Net. The model uses a lightweight encoder and incorporates a hierarchical transformer module (HTF) to suppress background noise and minimize parameter increase, effectively extracting multilevel global features. Additionally, this letter introduces a multidimensional cooperative attention guidance (MAG) mechanism, further enhancing the ability to detect boundary changes. The model has only 3.29 M parameters and a computational load of 3.89G, demonstrating its high applicability, particularly for real-time applications in resource-constrained environments. Experimental results show that LMG-Net achieves the state-of-the-art (SOTA) ${F}1$ scores and IoU values on the WHU-CD, SYSU-CD, and LEVIR-CD+ datasets: (94.79%, 90.09%), (82.29%, 69.90%), and (84.30%, 71.14%).
LMG-Net:一种具有多层次全局特征的轻型遥感变化检测网络
遥感变化检测(RSCD)是环境监测和资源管理的重要工具,在监测地表动态变化方面发挥着重要作用。在实际应用中,RSCD往往需要高精度、高效的检测方法。然而,传统方法技术复杂,参数多,容易受到复杂背景噪声的干扰,检测变化区域的性能较差。为了解决这些问题,这封信提出了一个轻量级的RSCD网络LMG-Net。该模型采用轻量级编码器,并结合层次化变换模块(HTF)来抑制背景噪声和减小参数的增加,有效地提取了多层全局特征。此外,本文引入了多维合作注意引导(MAG)机制,进一步增强了检测边界变化的能力。该模型参数仅为3.29 M,计算负荷为3.89G,具有较高的适用性,尤其适用于资源受限环境下的实时应用。实验结果表明,LMG-Net在WHU-CD、SYSU-CD和levirr - cd +数据集上的得分和IoU值分别为(94.79%、90.09%)、(82.29%、69.90%)和(84.30%、71.14%),达到了最先进的(SOTA) ${F}1$分数和IoU值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信