Residually finite groups with uniformly almost flat quotients

IF 1.5 1区 数学 Q1 MATHEMATICS
David Guo, Matthew Tointon
{"title":"Residually finite groups with uniformly almost flat quotients","authors":"David Guo,&nbsp;Matthew Tointon","doi":"10.1016/j.aim.2025.110495","DOIUrl":null,"url":null,"abstract":"<div><div>We show that if all the finite coset spaces of a polycyclic group have diameter bounded uniformly below by a polynomial in their size then the group is virtually nilpotent. We obtain the same conclusion for a finitely generated residually torsion-free nilpotent group under the weaker assumption that the finite quotient groups have diameter bounded uniformly below by a polynomial in their size. This extends work of Khukhro and Valette.</div></div>","PeriodicalId":50860,"journal":{"name":"Advances in Mathematics","volume":"480 ","pages":"Article 110495"},"PeriodicalIF":1.5000,"publicationDate":"2025-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0001870825003937","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We show that if all the finite coset spaces of a polycyclic group have diameter bounded uniformly below by a polynomial in their size then the group is virtually nilpotent. We obtain the same conclusion for a finitely generated residually torsion-free nilpotent group under the weaker assumption that the finite quotient groups have diameter bounded uniformly below by a polynomial in their size. This extends work of Khukhro and Valette.
具有一致几乎平商的剩余有限群
我们证明了如果一个多环群的所有有限余集空间的直径在其大小上均以一个多项式为界,那么这个群是几乎幂零的。在有限商群的直径在其大小上有一个多项式有界的较弱假设下,我们对有限生成的剩余无扭转幂零群得到了同样的结论。这扩展了Khukhro和Valette的工作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advances in Mathematics
Advances in Mathematics 数学-数学
CiteScore
2.80
自引率
5.90%
发文量
497
审稿时长
7.5 months
期刊介绍: Emphasizing contributions that represent significant advances in all areas of pure mathematics, Advances in Mathematics provides research mathematicians with an effective medium for communicating important recent developments in their areas of specialization to colleagues and to scientists in related disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信