Noncovalent Cross-Linking of Diketopyrrolopyrrole Polymer via Polyvinyl Chloride for Intrinsically Stretchable Organic Field-Effect Transistors

IF 5.2 1区 化学 Q1 POLYMER SCIENCE
Hao Wang, , , Chengyi Xiao*, , , Haonan Geng, , , Ying Liu, , , Jianing Xu, , , Ziheng Lu, , , Haiyun Fan, , , Yonggang Zhen, , and , Weiwei Li*, 
{"title":"Noncovalent Cross-Linking of Diketopyrrolopyrrole Polymer via Polyvinyl Chloride for Intrinsically Stretchable Organic Field-Effect Transistors","authors":"Hao Wang,&nbsp;, ,&nbsp;Chengyi Xiao*,&nbsp;, ,&nbsp;Haonan Geng,&nbsp;, ,&nbsp;Ying Liu,&nbsp;, ,&nbsp;Jianing Xu,&nbsp;, ,&nbsp;Ziheng Lu,&nbsp;, ,&nbsp;Haiyun Fan,&nbsp;, ,&nbsp;Yonggang Zhen,&nbsp;, and ,&nbsp;Weiwei Li*,&nbsp;","doi":"10.1021/acs.macromol.5c01817","DOIUrl":null,"url":null,"abstract":"<p >The physical blending of insulating polymers into conjugated polymer matrices has emerged as an effective strategy to improve mechanical properties in flexible electronics through enhanced tie-chain density and noncovalent cross-linking network formation. In this study, we demonstrate polyvinyl chloride (PVC) as an effective tie-chain promoter for diketopyrrolopyrrole (DPP)-thiophene copolymers (DPP-T) through C–H···S hydrogen bonding and C–Cl···C═O dipole–dipole force. The PVC/DPP-T blend simultaneously enhances mechanical properties (crack-onset strain: 40.3% to 80.2%; elastic modulus: 120 to 80 MPa) while maintaining charge transport performance (hole mobility: 0.03–0.06 cm<sup>2</sup> V<sup>–1</sup> s<sup>–1</sup>) in stretchable organic field-effect transistors under 100% strain. This physical blending approach creates a noncovalent cross-linking network that improves electromechanical stability without complex synthetic modification, offering a practical solution to the intrinsic mobility-stretchability trade-off in conjugated polymers.</p>","PeriodicalId":51,"journal":{"name":"Macromolecules","volume":"58 18","pages":"9809–9818"},"PeriodicalIF":5.2000,"publicationDate":"2025-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macromolecules","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.macromol.5c01817","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

The physical blending of insulating polymers into conjugated polymer matrices has emerged as an effective strategy to improve mechanical properties in flexible electronics through enhanced tie-chain density and noncovalent cross-linking network formation. In this study, we demonstrate polyvinyl chloride (PVC) as an effective tie-chain promoter for diketopyrrolopyrrole (DPP)-thiophene copolymers (DPP-T) through C–H···S hydrogen bonding and C–Cl···C═O dipole–dipole force. The PVC/DPP-T blend simultaneously enhances mechanical properties (crack-onset strain: 40.3% to 80.2%; elastic modulus: 120 to 80 MPa) while maintaining charge transport performance (hole mobility: 0.03–0.06 cm2 V–1 s–1) in stretchable organic field-effect transistors under 100% strain. This physical blending approach creates a noncovalent cross-linking network that improves electromechanical stability without complex synthetic modification, offering a practical solution to the intrinsic mobility-stretchability trade-off in conjugated polymers.

Abstract Image

Abstract Image

聚氯乙烯非共价交联双酮吡咯聚合物用于本征可拉伸的有机场效应晶体管
将绝缘聚合物物理共混到共轭聚合物基体中已经成为一种有效的策略,通过增强连接链密度和非共价交联网络的形成来改善柔性电子器件的机械性能。在这项研究中,我们证明了聚氯乙烯(PVC)通过C - h··S氢键和C - cl··C = O偶极子-偶极子力作为二酮吡咯(DPP)-噻吩共聚物(DPP- t)的有效结链促进剂。PVC/DPP-T共混物在100%应变下提高了可拉伸有机场效应晶体管的力学性能(裂纹开始应变:40.3% ~ 80.2%;弹性模量:120 ~ 80mpa),同时保持了电荷输运性能(空穴迁移率:0.03 ~ 0.06 cm2 V-1 s-1)。这种物理共混方法创建了一种非共价交联网络,无需复杂的合成改性即可提高机电稳定性,为共轭聚合物的固有迁移性和拉伸性之间的权衡提供了一种实用的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Macromolecules
Macromolecules 工程技术-高分子科学
CiteScore
9.30
自引率
16.40%
发文量
942
审稿时长
2 months
期刊介绍: Macromolecules publishes original, fundamental, and impactful research on all aspects of polymer science. Topics of interest include synthesis (e.g., controlled polymerizations, polymerization catalysis, post polymerization modification, new monomer structures and polymer architectures, and polymerization mechanisms/kinetics analysis); phase behavior, thermodynamics, dynamic, and ordering/disordering phenomena (e.g., self-assembly, gelation, crystallization, solution/melt/solid-state characteristics); structure and properties (e.g., mechanical and rheological properties, surface/interfacial characteristics, electronic and transport properties); new state of the art characterization (e.g., spectroscopy, scattering, microscopy, rheology), simulation (e.g., Monte Carlo, molecular dynamics, multi-scale/coarse-grained modeling), and theoretical methods. Renewable/sustainable polymers, polymer networks, responsive polymers, electro-, magneto- and opto-active macromolecules, inorganic polymers, charge-transporting polymers (ion-containing, semiconducting, and conducting), nanostructured polymers, and polymer composites are also of interest. Typical papers published in Macromolecules showcase important and innovative concepts, experimental methods/observations, and theoretical/computational approaches that demonstrate a fundamental advance in the understanding of polymers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信