Lanthanide Contraction-Driven Modulation of Photoswitchable Macrocyclic Complexes Reveals Unprecedented Glass-Induced Re-isomerization and Luminescent Thermometry

IF 6.4 1区 化学 Q1 CHEMISTRY, INORGANIC & NUCLEAR
Dominika Prętka, Dawid Marcinkowski, Nahir Vadra, Przemysław Woźny, Marcin Runowski, Maciej Kubicki, Violetta Patroniak, Giuseppe Consiglio, Giuseppe Forte, Adam Gorczyński
{"title":"Lanthanide Contraction-Driven Modulation of Photoswitchable Macrocyclic Complexes Reveals Unprecedented Glass-Induced Re-isomerization and Luminescent Thermometry","authors":"Dominika Prętka, Dawid Marcinkowski, Nahir Vadra, Przemysław Woźny, Marcin Runowski, Maciej Kubicki, Violetta Patroniak, Giuseppe Consiglio, Giuseppe Forte, Adam Gorczyński","doi":"10.1039/d5qi01461a","DOIUrl":null,"url":null,"abstract":"Designing light-responsive supramolecular architectures with lanthanide ions offers a promising route towards multifunctional materials with tunable photophysical properties. Here, we report a systematic investigation across the lanthanide series of macrocyclic complexes incorporating azobenzene-functionalized diaza-crown ether ligands. We show that subtle changes in ionic radius across the Ln3+ series dictate conformational preferences and modulate trans-to-cis photoisomerization efficiency under UV and visible light. Surprisingly, we uncover that the reverse cis-to-trans isomerization, which is here unresponsive to thermal or photonic stimuli, is uniquely triggered by contact with glass surfaces, revealing a previously overlooked route for controlling molecular photoswitching. Additionally, selected complexes display efficient visible and near-infrared emission leveraged for robust luminescent thermometric behaviour in the solid state, with tunable sensitivity linked to the lanthanide. These findings advance the field of light-driven supramolecular materials and demonstrate how careful molecular-level design of lanthanide–azobenzene assemblies enables control over photoswitching, luminescence and thermal sensing properties, highlighting glass-mediated re-isomerization as a novel phenomenon with implications for future photoresponsive materials.","PeriodicalId":79,"journal":{"name":"Inorganic Chemistry Frontiers","volume":"66 1","pages":""},"PeriodicalIF":6.4000,"publicationDate":"2025-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inorganic Chemistry Frontiers","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d5qi01461a","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0

Abstract

Designing light-responsive supramolecular architectures with lanthanide ions offers a promising route towards multifunctional materials with tunable photophysical properties. Here, we report a systematic investigation across the lanthanide series of macrocyclic complexes incorporating azobenzene-functionalized diaza-crown ether ligands. We show that subtle changes in ionic radius across the Ln3+ series dictate conformational preferences and modulate trans-to-cis photoisomerization efficiency under UV and visible light. Surprisingly, we uncover that the reverse cis-to-trans isomerization, which is here unresponsive to thermal or photonic stimuli, is uniquely triggered by contact with glass surfaces, revealing a previously overlooked route for controlling molecular photoswitching. Additionally, selected complexes display efficient visible and near-infrared emission leveraged for robust luminescent thermometric behaviour in the solid state, with tunable sensitivity linked to the lanthanide. These findings advance the field of light-driven supramolecular materials and demonstrate how careful molecular-level design of lanthanide–azobenzene assemblies enables control over photoswitching, luminescence and thermal sensing properties, highlighting glass-mediated re-isomerization as a novel phenomenon with implications for future photoresponsive materials.
镧系元素收缩驱动的光开关大环配合物的调制揭示了前所未有的玻璃诱导的再异构化和发光测温
利用镧系离子设计光响应超分子结构,为实现具有可调光物理性质的多功能材料提供了一条有前途的途径。在这里,我们报告了一个系统的研究横跨镧系大环配合物包含偶氮苯功能化重氮冠醚配体。我们发现,在紫外和可见光下,离子半径的细微变化决定了Ln3+系列的构象偏好,并调节了反式到顺式的光异构效率。令人惊讶的是,我们发现逆顺式到反式异构化,在这里对热或光子刺激没有反应,是唯一由与玻璃表面接触触发的,揭示了以前被忽视的控制分子光电开关的途径。此外,所选择的配合物显示出有效的可见光和近红外发射,在固态下具有强大的发光测温行为,具有与镧系元素相关的可调灵敏度。这些发现推动了光驱动超分子材料领域的发展,并证明了镧系-偶氮苯组件的分子水平设计如何能够控制光开关、发光和热敏性能,突出了玻璃介导的再异构化作为一种新现象,对未来的光响应材料具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Inorganic Chemistry Frontiers
Inorganic Chemistry Frontiers CHEMISTRY, INORGANIC & NUCLEAR-
CiteScore
10.40
自引率
7.10%
发文量
587
审稿时长
1.2 months
期刊介绍: The international, high quality journal for interdisciplinary research between inorganic chemistry and related subjects
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信