Dominika Prętka, Dawid Marcinkowski, Nahir Vadra, Przemysław Woźny, Marcin Runowski, Maciej Kubicki, Violetta Patroniak, Giuseppe Consiglio, Giuseppe Forte, Adam Gorczyński
{"title":"Lanthanide Contraction-Driven Modulation of Photoswitchable Macrocyclic Complexes Reveals Unprecedented Glass-Induced Re-isomerization and Luminescent Thermometry","authors":"Dominika Prętka, Dawid Marcinkowski, Nahir Vadra, Przemysław Woźny, Marcin Runowski, Maciej Kubicki, Violetta Patroniak, Giuseppe Consiglio, Giuseppe Forte, Adam Gorczyński","doi":"10.1039/d5qi01461a","DOIUrl":null,"url":null,"abstract":"Designing light-responsive supramolecular architectures with lanthanide ions offers a promising route towards multifunctional materials with tunable photophysical properties. Here, we report a systematic investigation across the lanthanide series of macrocyclic complexes incorporating azobenzene-functionalized diaza-crown ether ligands. We show that subtle changes in ionic radius across the Ln3+ series dictate conformational preferences and modulate trans-to-cis photoisomerization efficiency under UV and visible light. Surprisingly, we uncover that the reverse cis-to-trans isomerization, which is here unresponsive to thermal or photonic stimuli, is uniquely triggered by contact with glass surfaces, revealing a previously overlooked route for controlling molecular photoswitching. Additionally, selected complexes display efficient visible and near-infrared emission leveraged for robust luminescent thermometric behaviour in the solid state, with tunable sensitivity linked to the lanthanide. These findings advance the field of light-driven supramolecular materials and demonstrate how careful molecular-level design of lanthanide–azobenzene assemblies enables control over photoswitching, luminescence and thermal sensing properties, highlighting glass-mediated re-isomerization as a novel phenomenon with implications for future photoresponsive materials.","PeriodicalId":79,"journal":{"name":"Inorganic Chemistry Frontiers","volume":"66 1","pages":""},"PeriodicalIF":6.4000,"publicationDate":"2025-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inorganic Chemistry Frontiers","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d5qi01461a","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0
Abstract
Designing light-responsive supramolecular architectures with lanthanide ions offers a promising route towards multifunctional materials with tunable photophysical properties. Here, we report a systematic investigation across the lanthanide series of macrocyclic complexes incorporating azobenzene-functionalized diaza-crown ether ligands. We show that subtle changes in ionic radius across the Ln3+ series dictate conformational preferences and modulate trans-to-cis photoisomerization efficiency under UV and visible light. Surprisingly, we uncover that the reverse cis-to-trans isomerization, which is here unresponsive to thermal or photonic stimuli, is uniquely triggered by contact with glass surfaces, revealing a previously overlooked route for controlling molecular photoswitching. Additionally, selected complexes display efficient visible and near-infrared emission leveraged for robust luminescent thermometric behaviour in the solid state, with tunable sensitivity linked to the lanthanide. These findings advance the field of light-driven supramolecular materials and demonstrate how careful molecular-level design of lanthanide–azobenzene assemblies enables control over photoswitching, luminescence and thermal sensing properties, highlighting glass-mediated re-isomerization as a novel phenomenon with implications for future photoresponsive materials.