Subgrid cage confinement engineering enabled ultra-efficient near-infrared Cr3+–Ln3+ co-doped phosphors

IF 6.4 1区 化学 Q1 CHEMISTRY, INORGANIC & NUCLEAR
Simeng Cao, Shaoan Zhang, Ximei An, Lei Yang, Mengting Gao, Zhiyue Yang, Chao He, Zonglong Guo, Yang Li
{"title":"Subgrid cage confinement engineering enabled ultra-efficient near-infrared Cr3+–Ln3+ co-doped phosphors","authors":"Simeng Cao, Shaoan Zhang, Ximei An, Lei Yang, Mengting Gao, Zhiyue Yang, Chao He, Zonglong Guo, Yang Li","doi":"10.1039/d5qi01468a","DOIUrl":null,"url":null,"abstract":"Precise control of energy migration between Cr<small><sup>3+</sup></small> sensitizers and Ln<small><sup>3+</sup></small> activators at the topochemical subgrid level remains a fundamental challenge. Herein, a novel subgrid cage confinement engineering strategy was proposed, achieving ultra-efficient near-infrared (NIR) Cr<small><sup>3+</sup></small>–Ln<small><sup>3+</sup></small> (Ln = Yb, Nd, Er) co-doped phosphors. The bilayer cage architecture of GdAl<small><sub>1.5</sub></small>Ga<small><sub>1.5</sub></small>(BO<small><sub>3</sub></small>)<small><sub>4</sub></small> precisely confines Ln<small><sup>3+</sup></small> at the central Gd<small><sup>3+</sup></small> sites, while providing octahedral lattice positions for Cr<small><sup>3+</sup></small> substitution within the Al/GaO<small><sub>6</sub></small> framework. This unique confinement constrains Cr<small><sup>3+</sup></small>–Ln<small><sup>3+</sup></small> separation to the optimal 3.67 Å while increasing the Ln<small><sup>3+</sup></small>–Ln<small><sup>3+</sup></small> distance to 5.92 Å, enabling highly efficient Cr<small><sup>3+</sup></small>–Ln<small><sup>3+</sup></small> energy transfer (<em>η</em><small><sub>ETE</sub></small>: 61% for Yb<small><sup>3+</sup></small>, 82% for Nd<small><sup>3+</sup></small>, 46% for Er<small><sup>3+</sup></small>) and suppressing energy losses between neighbouring Ln<small><sup>3+</sup></small> ions. Consequently, the Cr<small><sup>3+</sup></small>–Yb<small><sup>3+</sup></small> co-doped system achieved a high photoluminescence quantum yield of 86% and retained 94% of its intensity even at 423 K, demonstrating exceptional thermal stability. The fabricated NIR phosphor-converted light-emitting diodes delivered a NIR output power of 127 mW with a photoelectric efficiency of 13% under a 300 mA operating current. These capabilities enabled high-contrast biological imaging applications, such as vein visualization and non-destructive testing, as validated by prototype demonstrations.","PeriodicalId":79,"journal":{"name":"Inorganic Chemistry Frontiers","volume":"16 1","pages":""},"PeriodicalIF":6.4000,"publicationDate":"2025-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inorganic Chemistry Frontiers","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d5qi01468a","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0

Abstract

Precise control of energy migration between Cr3+ sensitizers and Ln3+ activators at the topochemical subgrid level remains a fundamental challenge. Herein, a novel subgrid cage confinement engineering strategy was proposed, achieving ultra-efficient near-infrared (NIR) Cr3+–Ln3+ (Ln = Yb, Nd, Er) co-doped phosphors. The bilayer cage architecture of GdAl1.5Ga1.5(BO3)4 precisely confines Ln3+ at the central Gd3+ sites, while providing octahedral lattice positions for Cr3+ substitution within the Al/GaO6 framework. This unique confinement constrains Cr3+–Ln3+ separation to the optimal 3.67 Å while increasing the Ln3+–Ln3+ distance to 5.92 Å, enabling highly efficient Cr3+–Ln3+ energy transfer (ηETE: 61% for Yb3+, 82% for Nd3+, 46% for Er3+) and suppressing energy losses between neighbouring Ln3+ ions. Consequently, the Cr3+–Yb3+ co-doped system achieved a high photoluminescence quantum yield of 86% and retained 94% of its intensity even at 423 K, demonstrating exceptional thermal stability. The fabricated NIR phosphor-converted light-emitting diodes delivered a NIR output power of 127 mW with a photoelectric efficiency of 13% under a 300 mA operating current. These capabilities enabled high-contrast biological imaging applications, such as vein visualization and non-destructive testing, as validated by prototype demonstrations.

Abstract Image

亚栅格笼约束工程实现了超高效近红外Cr3+ -Ln3 +共掺杂荧光粉
在拓扑化学亚网格水平上精确控制Cr3+敏化剂和Ln3+激活剂之间的能量迁移仍然是一个根本性的挑战。为此,提出了一种新的亚栅格笼约束工程策略,实现了超高效近红外(NIR) Cr3+ -Ln3 + (Ln = Yb, Nd, Er)共掺杂荧光粉。GdAl1.5Ga1.5(BO3)4的双层笼结构精确地将Ln3+限制在Gd3+的中心位置,同时为Al/GaO6框架内的Cr3+取代提供八面体晶格位置。这种独特的约束将Cr3+ -Ln3 +的分离限制在最佳的3.67 Å,同时将Ln3+ -Ln3 +的距离增加到5.92 Å,实现了Cr3+ -Ln3 +的高效能量转移(ηETE: Yb3+ 61%, Nd3+ 82%, Er3+ 46%),并抑制了相邻Ln3+离子之间的能量损失。因此,Cr3+ -Yb3 +共掺杂体系实现了86%的高光致发光量子产率,即使在423 K下也保持了94%的强度,表现出优异的热稳定性。在300 mA工作电流下,制备的近红外磷转换发光二极管输出功率为127 mW,光电效率为13%。这些功能实现了高对比度生物成像应用,如静脉可视化和非破坏性测试,并通过原型演示验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Inorganic Chemistry Frontiers
Inorganic Chemistry Frontiers CHEMISTRY, INORGANIC & NUCLEAR-
CiteScore
10.40
自引率
7.10%
发文量
587
审稿时长
1.2 months
期刊介绍: The international, high quality journal for interdisciplinary research between inorganic chemistry and related subjects
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信