Identification of temperature-insensitive residues in regulating SARS-CoV-2 variants-human ACE2 interaction-a study of molecular dynamics simulation.

IF 2.9 3区 化学 Q3 CHEMISTRY, PHYSICAL
Chuanbo Wang, Zijian Liu, Jinfei Mei, Mengke Jia, Sajjad Ahmad, Hongqi Ai
{"title":"Identification of temperature-insensitive residues in regulating SARS-CoV-2 variants-human ACE2 interaction-a study of molecular dynamics simulation.","authors":"Chuanbo Wang, Zijian Liu, Jinfei Mei, Mengke Jia, Sajjad Ahmad, Hongqi Ai","doi":"10.1039/d5cp01710f","DOIUrl":null,"url":null,"abstract":"<p><p>The COVID-19 pandemic remains a global health crisis, with successive SARS-CoV-2 variants exhibiting enhanced transmissibility and immune evasion. Notably, the Omicron variant harbors extensive mutations in the spike protein's receptor-binding domain (RBD), altering viral fitness. While temperature is a critical environmental factor modulating viral stability and transmission, its molecular-level effects on variant-specific RBD-human angiotensin-converting enzyme 2 (hACE2) interactions remain underexplored. Here, we employed all-atom molecular dynamics (MD) simulations to investigate temperature-dependent conformational dynamics of four major variants (alpha, beta, delta, and omicron) complexed with hACE2 at three temperatures (190 K, 250 K, and 310 K). Our analyses revealed two temperature-insensitive residues (K417N and E484K/A) in beta and omicron variants that maintain stable conformational states between 250 K and 310 K, contrasting sharply with temperature-dependent fluctuations observed in alpha and delta variants. These residues function as an allosteric converter, modulating interfacial interactions through temperature-regulated electrostatic and hydrophobic forces. Furthermore, we identified key \"effector\" residues (Q493, Y501 in beta; F486, R498 in omicron) that mediate temperature-dependent binding affinity changes. Our findings provide mechanistic insights into variant-specific environmental adaptation and propose novel targets for broad-spectrum therapeutic design.</p>","PeriodicalId":99,"journal":{"name":"Physical Chemistry Chemical Physics","volume":" ","pages":"20250-20265"},"PeriodicalIF":2.9000,"publicationDate":"2025-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Chemistry Chemical Physics","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d5cp01710f","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The COVID-19 pandemic remains a global health crisis, with successive SARS-CoV-2 variants exhibiting enhanced transmissibility and immune evasion. Notably, the Omicron variant harbors extensive mutations in the spike protein's receptor-binding domain (RBD), altering viral fitness. While temperature is a critical environmental factor modulating viral stability and transmission, its molecular-level effects on variant-specific RBD-human angiotensin-converting enzyme 2 (hACE2) interactions remain underexplored. Here, we employed all-atom molecular dynamics (MD) simulations to investigate temperature-dependent conformational dynamics of four major variants (alpha, beta, delta, and omicron) complexed with hACE2 at three temperatures (190 K, 250 K, and 310 K). Our analyses revealed two temperature-insensitive residues (K417N and E484K/A) in beta and omicron variants that maintain stable conformational states between 250 K and 310 K, contrasting sharply with temperature-dependent fluctuations observed in alpha and delta variants. These residues function as an allosteric converter, modulating interfacial interactions through temperature-regulated electrostatic and hydrophobic forces. Furthermore, we identified key "effector" residues (Q493, Y501 in beta; F486, R498 in omicron) that mediate temperature-dependent binding affinity changes. Our findings provide mechanistic insights into variant-specific environmental adaptation and propose novel targets for broad-spectrum therapeutic design.

调节SARS-CoV-2变异体温度不敏感残基的鉴定-人类ACE2相互作用-分子动力学模拟研究
COVID-19大流行仍然是一场全球卫生危机,连续出现的SARS-CoV-2变体表现出增强的传播性和免疫逃避。值得注意的是,Omicron变体在刺突蛋白的受体结合域(RBD)中含有广泛的突变,从而改变了病毒的适应性。虽然温度是调节病毒稳定性和传播的关键环境因素,但其对变异特异性rbd -人血管紧张素转换酶2 (hACE2)相互作用的分子水平影响仍未得到充分研究。在这里,我们采用全原子分子动力学(MD)模拟研究了四种主要变体(α, β, δ和omicron)在三种温度(190 K, 250 K和310 K)下与hACE2络合的温度依赖性构象动力学。我们的分析揭示了β和组粒变异中的两个温度不敏感残基(K417N和E484K/A)在250 K和310 K之间保持稳定的构象状态,与α和δ变异中观察到的温度依赖波动形成鲜明对比。这些残基作为变构转换器,通过温度调节的静电和疏水力来调节界面相互作用。此外,我们确定了介导温度依赖性结合亲和力变化的关键“效应”残基(β中的Q493, Y501;组粒中的F486, R498)。我们的发现为变异特异性环境适应提供了机制见解,并为广谱治疗设计提出了新的靶点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physical Chemistry Chemical Physics
Physical Chemistry Chemical Physics 化学-物理:原子、分子和化学物理
CiteScore
5.50
自引率
9.10%
发文量
2675
审稿时长
2.0 months
期刊介绍: Physical Chemistry Chemical Physics (PCCP) is an international journal co-owned by 19 physical chemistry and physics societies from around the world. This journal publishes original, cutting-edge research in physical chemistry, chemical physics and biophysical chemistry. To be suitable for publication in PCCP, articles must include significant innovation and/or insight into physical chemistry; this is the most important criterion that reviewers and Editors will judge against when evaluating submissions. The journal has a broad scope and welcomes contributions spanning experiment, theory, computation and data science. Topical coverage includes spectroscopy, dynamics, kinetics, statistical mechanics, thermodynamics, electrochemistry, catalysis, surface science, quantum mechanics, quantum computing and machine learning. Interdisciplinary research areas such as polymers and soft matter, materials, nanoscience, energy, surfaces/interfaces, and biophysical chemistry are welcomed if they demonstrate significant innovation and/or insight into physical chemistry. Joined experimental/theoretical studies are particularly appreciated when complementary and based on up-to-date approaches.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信