Inhibition of Hippo Signaling Through Ablation of Lats1 and Lats2 Protects Against Cognitive Decline in 5xFAD Mice via Increasing Neuronal Resilience Against Ferroptosis.

IF 7.1 1区 医学 Q1 CELL BIOLOGY
Aging Cell Pub Date : 2025-09-09 DOI:10.1111/acel.70218
Robert C Evans, Nawab John Dar, Liuji Chen, Ren Na, Jason C O'Connor, Jing Jiang, Siyuan Zheng, Qitao Ran
{"title":"Inhibition of Hippo Signaling Through Ablation of Lats1 and Lats2 Protects Against Cognitive Decline in 5xFAD Mice via Increasing Neuronal Resilience Against Ferroptosis.","authors":"Robert C Evans, Nawab John Dar, Liuji Chen, Ren Na, Jason C O'Connor, Jing Jiang, Siyuan Zheng, Qitao Ran","doi":"10.1111/acel.70218","DOIUrl":null,"url":null,"abstract":"<p><p>The Hippo signaling pathway is a key regulator of cell growth and cell survival, and hyperactivation of the Hippo pathway has been implicated in neurodegenerative diseases such as Huntington's disease. However, the role of Hippo signaling in Alzheimer's disease (AD) remains unclear. We observed that hyperactivation of Hippo signaling occurred in the AD model 5xFAD mice. To determine how inhibition of Hippo signaling might affect disease pathogenesis, we generated 5xFAD mice with conditional neuronal ablation of Lats1 and Lats2, the gatekeepers of Hippo signaling activity. Our results indicated that 5xFAD mice with ablation of Lats1 and Lats2 were protected against cognitive decline compared with control 5xFAD mice, and this protection was correlated with a marked reduction in neurodegeneration. Interestingly, primary culture neurons with ablation of Lats1 and Lats2 had significantly increased survival following treatment with chemical inducers of ferroptosis and exhibited reduced lipid peroxidation, the driving force of ferroptotic cell death. Moreover, 5xFAD mice with ablation of Lats1 and Lats2 showed reduced lipid peroxidation, and transcriptomic analysis revealed that 5xFAD mice with ablation of Lats1 and Lats2 had enriched metabolic pathways associated with ferroptosis. These results indicate that inhibition of Hippo signaling activity confers neural protection in 5xFAD mice by augmenting resilience against ferroptosis.</p>","PeriodicalId":119,"journal":{"name":"Aging Cell","volume":" ","pages":"e70218"},"PeriodicalIF":7.1000,"publicationDate":"2025-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aging Cell","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/acel.70218","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The Hippo signaling pathway is a key regulator of cell growth and cell survival, and hyperactivation of the Hippo pathway has been implicated in neurodegenerative diseases such as Huntington's disease. However, the role of Hippo signaling in Alzheimer's disease (AD) remains unclear. We observed that hyperactivation of Hippo signaling occurred in the AD model 5xFAD mice. To determine how inhibition of Hippo signaling might affect disease pathogenesis, we generated 5xFAD mice with conditional neuronal ablation of Lats1 and Lats2, the gatekeepers of Hippo signaling activity. Our results indicated that 5xFAD mice with ablation of Lats1 and Lats2 were protected against cognitive decline compared with control 5xFAD mice, and this protection was correlated with a marked reduction in neurodegeneration. Interestingly, primary culture neurons with ablation of Lats1 and Lats2 had significantly increased survival following treatment with chemical inducers of ferroptosis and exhibited reduced lipid peroxidation, the driving force of ferroptotic cell death. Moreover, 5xFAD mice with ablation of Lats1 and Lats2 showed reduced lipid peroxidation, and transcriptomic analysis revealed that 5xFAD mice with ablation of Lats1 and Lats2 had enriched metabolic pathways associated with ferroptosis. These results indicate that inhibition of Hippo signaling activity confers neural protection in 5xFAD mice by augmenting resilience against ferroptosis.

通过消融Lats1和Lats2抑制Hippo信号通过增加神经元对铁下垂的恢复力来保护5xFAD小鼠的认知能力下降。
Hippo信号通路是细胞生长和细胞存活的关键调节因子,Hippo信号通路的过度激活与神经退行性疾病如亨廷顿病有关。然而,Hippo信号在阿尔茨海默病(AD)中的作用尚不清楚。我们观察到在AD模型5xFAD小鼠中发生了Hippo信号的过度激活。为了确定Hippo信号的抑制如何影响疾病的发病机制,我们制造了5xFAD小鼠,条件性地切除了Hippo信号活性的看门人Lats1和Lats2神经元。我们的研究结果表明,与对照组5xFAD小鼠相比,切除Lats1和Lats2的5xFAD小鼠的认知能力下降受到保护,这种保护与神经退行性疾病的显著减少有关。有趣的是,原代培养的Lats1和Lats2缺失的神经元在接受铁细胞凋亡化学诱导剂治疗后,存活率显著提高,脂质过氧化反应减少,而脂质过氧化是导致铁细胞死亡的原因。此外,消融Lats1和Lats2的5xFAD小鼠显示脂质过氧化降低,转录组学分析显示,消融Lats1和Lats2的5xFAD小鼠具有丰富的与铁下沉相关的代谢途径。这些结果表明,抑制Hippo信号活性通过增强对铁下垂的恢复能力,赋予5xFAD小鼠神经保护作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Aging Cell
Aging Cell Biochemistry, Genetics and Molecular Biology-Cell Biology
自引率
2.60%
发文量
212
期刊介绍: Aging Cell is an Open Access journal that focuses on the core aspects of the biology of aging, encompassing the entire spectrum of geroscience. The journal's content is dedicated to publishing research that uncovers the mechanisms behind the aging process and explores the connections between aging and various age-related diseases. This journal aims to provide a comprehensive understanding of the biological underpinnings of aging and its implications for human health. The journal is widely recognized and its content is abstracted and indexed by numerous databases and services, which facilitates its accessibility and impact in the scientific community. These include: Academic Search (EBSCO Publishing) Academic Search Alumni Edition (EBSCO Publishing) Academic Search Premier (EBSCO Publishing) Biological Science Database (ProQuest) CAS: Chemical Abstracts Service (ACS) Embase (Elsevier) InfoTrac (GALE Cengage) Ingenta Select ISI Alerting Services Journal Citation Reports/Science Edition (Clarivate Analytics) MEDLINE/PubMed (NLM) Natural Science Collection (ProQuest) PubMed Dietary Supplement Subset (NLM) Science Citation Index Expanded (Clarivate Analytics) SciTech Premium Collection (ProQuest) Web of Science (Clarivate Analytics) Being indexed in these databases ensures that the research published in Aging Cell is discoverable by researchers, clinicians, and other professionals interested in the field of aging and its associated health issues. This broad coverage helps to disseminate the journal's findings and contributes to the advancement of knowledge in geroscience.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信