Development and characterization of a prototype selenium-75 high dose rate brachytherapy source

IF 3.2 2区 医学 Q1 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
Medical physics Pub Date : 2025-09-09 DOI:10.1002/mp.18088
Jonathan Kalinowski, Oren Tal, Jake Reid, John Munro III, Matthew Moran, Andrea Armstrong, Shirin A. Enger
{"title":"Development and characterization of a prototype selenium-75 high dose rate brachytherapy source","authors":"Jonathan Kalinowski,&nbsp;Oren Tal,&nbsp;Jake Reid,&nbsp;John Munro III,&nbsp;Matthew Moran,&nbsp;Andrea Armstrong,&nbsp;Shirin A. Enger","doi":"10.1002/mp.18088","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <h3> Background</h3>\n \n <p><sup>75</sup>Se (<span></span><math>\n <semantics>\n <msub>\n <mi>t</mi>\n <mrow>\n <mn>1</mn>\n <mo>/</mo>\n <mn>2</mn>\n </mrow>\n </msub>\n <annotation>$t_{1/2}$</annotation>\n </semantics></math> <span></span><math>\n <semantics>\n <mo>≈</mo>\n <annotation>$\\approx$</annotation>\n </semantics></math>120 days, <span></span><math>\n <semantics>\n <msub>\n <mi>E</mi>\n <mrow>\n <mi>γ</mi>\n <mo>,</mo>\n <mtext>avg</mtext>\n </mrow>\n </msub>\n <annotation>$E_{\\gamma,\\text{avg}}$</annotation>\n </semantics></math><span></span><math>\n <semantics>\n <mo>≈</mo>\n <annotation>$\\approx$</annotation>\n </semantics></math>215 keV) offers advantages over <sup>192</sup>Ir (<span></span><math>\n <semantics>\n <msub>\n <mi>t</mi>\n <mrow>\n <mn>1</mn>\n <mo>/</mo>\n <mn>2</mn>\n </mrow>\n </msub>\n <annotation>$t_{1/2}$</annotation>\n </semantics></math> <span></span><math>\n <semantics>\n <mo>≈</mo>\n <annotation>$\\approx$</annotation>\n </semantics></math>74 days, <span></span><math>\n <semantics>\n <msub>\n <mi>E</mi>\n <mrow>\n <mi>γ</mi>\n <mo>,</mo>\n <mtext>avg</mtext>\n </mrow>\n </msub>\n <annotation>$E_{\\gamma,\\text{avg}}$</annotation>\n </semantics></math><span></span><math>\n <semantics>\n <mo>≈</mo>\n <annotation>$\\approx$</annotation>\n </semantics></math>360 keV) as a high dose rate brachytherapy source due to its lower gamma energy and longer half-life. Despite its widespread use in industrial gamma radiography, a <sup>75</sup>Se brachytherapy source has yet to be manufactured.</p>\n </section>\n \n <section>\n \n <h3> Purpose</h3>\n \n <p>A novel <sup>75</sup>Se-based source design with a vanadium diselenide core, titled the SeCure source, was proposed. This study aimed to evaluate the feasibility of this source design for dosimetry and manufacturability purposes and to develop an activated prototype source.</p>\n </section>\n \n <section>\n \n <h3> Methods</h3>\n \n <p>The source was modeled and integrated into the Monte Carlo-based treatment planning system RapidBrachyMCTPS, where its TG-43U1 parameters, photon spectrum, and broad beam first half-value layers (HVL<sub>1</sub>) and tenth-value layers (TVL<sub>1</sub>) in lead, tungsten, and concrete were calculated. A prototype source was manufactured, and the vanadium diselenide content of the capsule was verified with neutron radiography. The source was then activated to a nominal activity of <span></span><math>\n <semantics>\n <mrow>\n <mn>8.5</mn>\n <mo>±</mo>\n <mn>0.9</mn>\n </mrow>\n <annotation>$8.5\\pm 0.9$</annotation>\n </semantics></math> mCi at the McMaster Nuclear Reactor. The activity was measured with two separate dose calibrators. Gamma spectroscopy was used to characterize any activated radioactive contaminants in the source, and wipe testing was performed to check for any leakage of <sup>75</sup>Se from the encapsulation.</p>\n </section>\n \n <section>\n \n <h3> Results</h3>\n \n <p>The SeCure source's TG-43U1 parameters were computed, showing that <span></span><math>\n <semantics>\n <mrow>\n <mn>2.056</mn>\n <mo>±</mo>\n <mn>0.003</mn>\n </mrow>\n <annotation>$2.056\\pm 0.003$</annotation>\n </semantics></math> times the activity of <sup>75</sup>Se is required relative to <sup>192</sup>Ir to achieve the same dose rate in water at (1 cm, 90<span></span><math>\n <semantics>\n <msup>\n <mrow></mrow>\n <mo>∘</mo>\n </msup>\n <annotation>$^\\circ$</annotation>\n </semantics></math>). The mean spectral energy of the source is <span></span><math>\n <semantics>\n <mrow>\n <mn>214.695</mn>\n <mo>±</mo>\n <mn>0.005</mn>\n </mrow>\n <annotation>$214.695\\pm 0.005$</annotation>\n </semantics></math> keV, resulting in reduced first half-value and tenth-value layers relative to <sup>192</sup>Ir in attenuating materials. For example, the <span></span><math>\n <semantics>\n <msub>\n <mi>HVL</mi>\n <mn>1</mn>\n </msub>\n <annotation>${\\rm HVL}_1$</annotation>\n </semantics></math> was reduced from <span></span><math>\n <semantics>\n <mrow>\n <mn>2.795</mn>\n <mo>±</mo>\n <mn>0.002</mn>\n </mrow>\n <annotation>$2.795\\pm 0.002$</annotation>\n </semantics></math> mm to <span></span><math>\n <semantics>\n <mrow>\n <mn>1.020</mn>\n <mo>±</mo>\n <mn>0.001</mn>\n </mrow>\n <annotation>$1.020\\pm 0.001$</annotation>\n </semantics></math> mm in lead, from <span></span><math>\n <semantics>\n <mrow>\n <mn>2.049</mn>\n <mo>±</mo>\n <mn>0.002</mn>\n </mrow>\n <annotation>$2.049\\pm 0.002$</annotation>\n </semantics></math> mm to <span></span><math>\n <semantics>\n <mrow>\n <mn>0.752</mn>\n <mo>±</mo>\n <mn>0.001</mn>\n </mrow>\n <annotation>$0.752\\pm 0.001$</annotation>\n </semantics></math> mm in tungsten, and from <span></span><math>\n <semantics>\n <mrow>\n <mn>70.63</mn>\n <mo>±</mo>\n <mn>0.04</mn>\n </mrow>\n <annotation>$70.63\\pm 0.04$</annotation>\n </semantics></math> mm to <span></span><math>\n <semantics>\n <mrow>\n <mn>61.37</mn>\n <mo>±</mo>\n <mn>0.03</mn>\n </mrow>\n <annotation>$61.37\\pm 0.03$</annotation>\n </semantics></math> mm in concrete. The activated source achieved the desired activity, indicated as <span></span><math>\n <semantics>\n <mrow>\n <mn>9.2</mn>\n <mo>±</mo>\n <mn>0.2</mn>\n </mrow>\n <annotation>$9.2\\pm 0.2$</annotation>\n </semantics></math> mCi and <span></span><math>\n <semantics>\n <mrow>\n <mn>8.5</mn>\n <mo>±</mo>\n <mn>0.9</mn>\n </mrow>\n <annotation>$8.5\\pm 0.9$</annotation>\n </semantics></math> mCi at the end of irradiation on the two dose calibrators. All identified radionuclide contaminants decaying below <span></span><math>\n <semantics>\n <mrow>\n <mn>0.1</mn>\n <mo>%</mo>\n </mrow>\n <annotation>$0.1\\%$</annotation>\n </semantics></math> of the <sup>75</sup>Se activity after 5 days post-irradiation. Wipe testing only identified radioactive contaminants present in activated titanium, with only <span></span><math>\n <semantics>\n <mrow>\n <mn>1.24</mn>\n <mo>±</mo>\n <mn>0.01</mn>\n <mo>×</mo>\n <msup>\n <mn>10</mn>\n <mrow>\n <mo>−</mo>\n <mn>7</mn>\n </mrow>\n </msup>\n </mrow>\n <annotation>$1.24\\pm 0.01\\times 10^{-7}$</annotation>\n </semantics></math> mCi of <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mrow></mrow>\n <mn>24</mn>\n </msup>\n <mi>Na</mi>\n </mrow>\n <annotation>$^{24}{\\rm Na}$</annotation>\n </semantics></math> detected 72 h post-irradiation, indicating that the integrity of the encapsulation was maintained.</p>\n </section>\n \n <section>\n \n <h3> Conclusions</h3>\n \n <p>The SeCure design possesses the dosimetric, spectral, and physical properties necessary for a feasible high dose rate brachytherapy source. Next, manufacturing of a high-activity SeCure source will be pursued.</p>\n </section>\n </div>","PeriodicalId":18384,"journal":{"name":"Medical physics","volume":"52 9","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2025-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://aapm.onlinelibrary.wiley.com/doi/epdf/10.1002/mp.18088","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical physics","FirstCategoryId":"3","ListUrlMain":"https://aapm.onlinelibrary.wiley.com/doi/10.1002/mp.18088","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

Background

75Se ( t 1 / 2 $t_{1/2}$ $\approx$ 120 days, E γ , avg $E_{\gamma,\text{avg}}$ $\approx$ 215 keV) offers advantages over 192Ir ( t 1 / 2 $t_{1/2}$ $\approx$ 74 days, E γ , avg $E_{\gamma,\text{avg}}$ $\approx$ 360 keV) as a high dose rate brachytherapy source due to its lower gamma energy and longer half-life. Despite its widespread use in industrial gamma radiography, a 75Se brachytherapy source has yet to be manufactured.

Purpose

A novel 75Se-based source design with a vanadium diselenide core, titled the SeCure source, was proposed. This study aimed to evaluate the feasibility of this source design for dosimetry and manufacturability purposes and to develop an activated prototype source.

Methods

The source was modeled and integrated into the Monte Carlo-based treatment planning system RapidBrachyMCTPS, where its TG-43U1 parameters, photon spectrum, and broad beam first half-value layers (HVL1) and tenth-value layers (TVL1) in lead, tungsten, and concrete were calculated. A prototype source was manufactured, and the vanadium diselenide content of the capsule was verified with neutron radiography. The source was then activated to a nominal activity of 8.5 ± 0.9 $8.5\pm 0.9$ mCi at the McMaster Nuclear Reactor. The activity was measured with two separate dose calibrators. Gamma spectroscopy was used to characterize any activated radioactive contaminants in the source, and wipe testing was performed to check for any leakage of 75Se from the encapsulation.

Results

The SeCure source's TG-43U1 parameters were computed, showing that 2.056 ± 0.003 $2.056\pm 0.003$ times the activity of 75Se is required relative to 192Ir to achieve the same dose rate in water at (1 cm, 90 $^\circ$ ). The mean spectral energy of the source is 214.695 ± 0.005 $214.695\pm 0.005$ keV, resulting in reduced first half-value and tenth-value layers relative to 192Ir in attenuating materials. For example, the HVL 1 ${\rm HVL}_1$ was reduced from 2.795 ± 0.002 $2.795\pm 0.002$ mm to 1.020 ± 0.001 $1.020\pm 0.001$ mm in lead, from 2.049 ± 0.002 $2.049\pm 0.002$ mm to 0.752 ± 0.001 $0.752\pm 0.001$ mm in tungsten, and from 70.63 ± 0.04 $70.63\pm 0.04$ mm to 61.37 ± 0.03 $61.37\pm 0.03$ mm in concrete. The activated source achieved the desired activity, indicated as 9.2 ± 0.2 $9.2\pm 0.2$ mCi and 8.5 ± 0.9 $8.5\pm 0.9$ mCi at the end of irradiation on the two dose calibrators. All identified radionuclide contaminants decaying below 0.1 % $0.1\%$ of the 75Se activity after 5 days post-irradiation. Wipe testing only identified radioactive contaminants present in activated titanium, with only 1.24 ± 0.01 × 10 7 $1.24\pm 0.01\times 10^{-7}$ mCi of 24 Na $^{24}{\rm Na}$ detected 72 h post-irradiation, indicating that the integrity of the encapsulation was maintained.

Conclusions

The SeCure design possesses the dosimetric, spectral, and physical properties necessary for a feasible high dose rate brachytherapy source. Next, manufacturing of a high-activity SeCure source will be pursued.

Abstract Image

Abstract Image

Abstract Image

硒-75高剂量率近距离治疗源原型的研制与表征
75Se (t 1 / 2 $t_{1/2}$≈$\approx$ 120天,E γ,avg $E_{\gamma,\text{avg}}$≈$\approx$ 215 keV)优于192Ir (t1 / 2)$t_{1/2}$≈$\approx$ 74天,E γ,avg $E_{\gamma,\text{avg}}$≈$\approx$ 360 keV)由于其较低的γ能量和较长的半衰期而成为高剂量率近距离治疗源。尽管在工业伽马射线摄影中广泛使用,但75Se近距离治疗源尚未制造出来。目的提出了一种新型的基于75se的二硒化钒核源设计,称为安全源。本研究旨在评估该辐射源设计在剂量学和可制造性方面的可行性,并开发一个可激活的原型辐射源。方法将该光源建模并集成到基于蒙特卡罗的治疗计划系统RapidBrachyMCTPS中,计算其TG-43U1参数、光子光谱以及铅、钨和混凝土中的宽光束第一半值层(HVL1)和第十值层(TVL1)。制作了原型源,并用中子射线照相法验证了胶囊中二硒化钒的含量。然后在麦克马斯特核反应堆将源激活到8.5±0.9 $8.5\pm 0.9$ mCi的标称活度。用两个单独的剂量校准器测定活性。伽玛光谱用于表征源中的任何活性放射性污染物,并进行擦拭测试以检查封装中是否有75Se泄漏。结果计算了安全源的TG-43U1参数,结果表明,在(1 cm)水中达到相同的剂量率,需要75Se相对于192Ir的活度为2.056±0.003 $2.056\pm 0.003$倍。90°$^\circ$)。光源的平均光谱能量为214.695±0.005 $214.695\pm 0.005$ keV,相对于衰减材料中的192Ir,减少了前半值层和第十值层。例如,HVL 1 ${\rm HVL}_1$从2.795±0.002 $2.795\pm 0.002$ mm减小到 0.001 mm铅,从2.049±0.002$ 2.049\pm 0.002$ mm到0.752±0.001$ 0.752\pm 0.001$ mm而从70.63±0.04$ 70.63\pm 0.04$ mm到61.37±0.03$ 61.37\pm 0.03$ mm的混凝土。激活源达到了期望的活性,在两个剂量照射结束时分别为9.2±0.2$ 9.2\pm 0.2$ mCi和8.5±0.9$ 8.5\pm 0.9$ mCi校准器。辐照后5天,所有确定的放射性核素污染物均衰变至75Se活度的0.1%以下。擦拭测试只发现了活性钛中存在的放射性污染物,只有1.24±0.01 × 10−7 $1.24\pm 0.01\ × 10^{-7}$ mCi的辐照72 h后检测到24 Na $^{24}{\rm Na}$,表明包封的完整性得以保持。结论SeCure设计具有可行的高剂量率近距离放射治疗源所需的剂量学、光谱和物理特性。下一步,将追求高活性安全源的制造。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Medical physics
Medical physics 医学-核医学
CiteScore
6.80
自引率
15.80%
发文量
660
审稿时长
1.7 months
期刊介绍: Medical Physics publishes original, high impact physics, imaging science, and engineering research that advances patient diagnosis and therapy through contributions in 1) Basic science developments with high potential for clinical translation 2) Clinical applications of cutting edge engineering and physics innovations 3) Broadly applicable and innovative clinical physics developments Medical Physics is a journal of global scope and reach. By publishing in Medical Physics your research will reach an international, multidisciplinary audience including practicing medical physicists as well as physics- and engineering based translational scientists. We work closely with authors of promising articles to improve their quality.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信